address_matcher / tools /constants.py
seanpedrickcase's picture
Rearranged interface to focus on API. Optimised Dockerfile.
99d13a7
import os
import pandas as pd
import pickle
import torch
import zipfile
from typing import List, Union, Type, Dict
from pydantic import BaseModel
from .pytorch_models import *
PandasDataFrame = Type[pd.DataFrame]
PandasSeries = Type[pd.Series]
def get_or_create_env_var(var_name, default_value):
# Get the environment variable if it exists
value = os.environ.get(var_name)
# If it doesn't exist, set it to the default value
if value is None:
os.environ[var_name] = default_value
value = default_value
return value
# Retrieving or setting output folder
env_var_name = 'GRADIO_OUTPUT_FOLDER'
default_value = 'output/'
output_folder = get_or_create_env_var(env_var_name, default_value)
print(f'The value of {env_var_name} is {output_folder}')
# +
''' Fuzzywuzzy/Rapidfuzz scorer to use. Options are: ratio, partial_ratio, token_sort_ratio, partial_token_sort_ratio,
token_set_ratio, partial_token_set_ratio, QRatio, UQRatio, WRatio (default), UWRatio
details here: https://stackoverflow.com/questions/31806695/when-to-use-which-fuzz-function-to-compare-2-strings'''
fuzzy_scorer_used = "token_set_ratio"
fuzzy_match_limit = 85
fuzzy_search_addr_limit = 20
filter_to_lambeth_pcodes= True
standardise = False
if standardise == True:
std = "_std"
if standardise == False:
std = "_not_std"
dataset_name = "data" + std
suffix_used = dataset_name + "_" + fuzzy_scorer_used
# https://stackoverflow.com/questions/59221557/tensorflow-v2-replacement-for-tf-contrib-predictor-from-saved-model
# Uncomment these lines for the tensorflow model
#model_type = "tf"
#model_stub = "addr_model_out_lon"
#model_version = "00000001"
#file_step_suffix = "550" # I add a suffix to output files to be able to separate comparisons of test data from the same model with different steps e.g. '350' indicates a model that has been through 350,000 steps of training
# Uncomment these lines for the pytorch model
model_type = "lstm"
model_stub = "pytorch/lstm"
model_version = ""
file_step_suffix = ""
data_sample_size = 476887
N_EPOCHS = 10
max_predict_len = 12000
word_to_index = {}
cat_to_idx = {}
vocab = []
device = "cpu"
global labels_list
labels_list = []
ROOT_DIR = os.path.realpath(os.path.join(os.path.dirname(__file__), '..'))
# If in a non-standard location (e.g. on AWS Lambda Function URL, then save model to tmp drive)
if output_folder == "output/":
out_model_dir = ROOT_DIR
print(out_model_dir)
else:
out_model_dir = output_folder[:-1]
print(out_model_dir)
model_dir_name = os.path.join(ROOT_DIR, "nnet_model" , model_stub , model_version)
model_path = os.path.join(model_dir_name, "saved_model.zip")
print("Model zip path: ", model_path)
if os.path.exists(model_path):
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # Better to go without GPU to avoid 'out of memory' issues
device = "cpu"
## The labels_list object defines the structure of the prediction outputs. It must be the same as what the model was originally trained on
''' Load pre-trained model '''
with zipfile.ZipFile(model_path,"r") as zip_ref:
zip_ref.extractall(out_model_dir)
# if model_stub == "addr_model_out_lon":
#import tensorflow as tf
#tf.config.list_physical_devices('GPU')
# # Number of labels in total (+1 for the blank category)
# n_labels = len(labels_list) + 1
# # Allowable characters for the encoded representation
# vocab = list(string.digits + string.ascii_lowercase + string.punctuation + string.whitespace)
# #print("Loading TF model")
# exported_model = tf.saved_model.load(model_dir_name)
# labels_list = [
# 'SaoText', # 1
# 'SaoStartNumber', # 2
# 'SaoStartSuffix', # 3
# 'SaoEndNumber', # 4
# 'SaoEndSuffix', # 5
# 'PaoText', # 6
# 'PaoStartNumber', # 7
# 'PaoStartSuffix', # 8
# 'PaoEndNumber', # 9
# 'PaoEndSuffix', # 10
# 'Street', # 11
# 'PostTown', # 12
# 'AdministrativeArea', #13
# 'Postcode' # 14
# ]
if "pytorch" in model_stub:
labels_list = [
'SaoText', # 1
'SaoStartNumber', # 2
'SaoStartSuffix', # 3
'SaoEndNumber', # 4
'SaoEndSuffix', # 5
'PaoText', # 6
'PaoStartNumber', # 7
'PaoStartSuffix', # 8
'PaoEndNumber', # 9
'PaoEndSuffix', # 10
'Street', # 11
'PostTown', # 12
'AdministrativeArea', #13
'Postcode', # 14
'IGNORE'
]
if (model_type == "transformer") | (model_type == "gru") | (model_type == "lstm") :
# Load vocab and word_to_index
with open(out_model_dir + "/vocab.txt", "r") as f:
vocab = eval(f.read())
with open(out_model_dir + "/word_to_index.txt", "r") as f:
word_to_index = eval(f.read())
with open(out_model_dir + "/cat_to_idx.txt", "r") as f:
cat_to_idx = eval(f.read())
VOCAB_SIZE = len(word_to_index)
OUTPUT_DIM = len(cat_to_idx) + 1 # Number of classes/categories
EMBEDDING_DIM = 48
DROPOUT = 0.1
PAD_TOKEN = 0
if model_type == "transformer":
NHEAD = 4
NUM_ENCODER_LAYERS = 1
exported_model = TransformerClassifier(VOCAB_SIZE, EMBEDDING_DIM, NHEAD, NUM_ENCODER_LAYERS, OUTPUT_DIM, DROPOUT, PAD_TOKEN)
elif model_type == "gru":
N_LAYERS = 3
HIDDEN_DIM = 128
exported_model = TextClassifier(VOCAB_SIZE, EMBEDDING_DIM, HIDDEN_DIM, OUTPUT_DIM, N_LAYERS, DROPOUT, PAD_TOKEN)
elif model_type == "lstm":
N_LAYERS = 3
HIDDEN_DIM = 128
exported_model = LSTMTextClassifier(VOCAB_SIZE, EMBEDDING_DIM, HIDDEN_DIM, OUTPUT_DIM, N_LAYERS, DROPOUT, PAD_TOKEN)
out_model_file_name = "output_model_" + str(data_sample_size) +\
"_" + str(N_EPOCHS) + "_" + model_type + ".pth"
out_model_path = os.path.join(out_model_dir, out_model_file_name)
print("Model location: ", out_model_path)
exported_model.load_state_dict(torch.load(out_model_path, map_location=torch.device('cpu'), weights_only=False))
exported_model.eval()
device='cpu'
#device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
exported_model.to(device)
else:
exported_model = [] #tf.keras.models.load_model(model_dir_name, compile=False)
# Compile the model with a loss function and an optimizer
#exported_model.compile(loss='categorical_crossentropy', optimizer='adam', metrics = ['categorical_crossentropy'])
else: exported_model = []
### ADDRESS MATCHING FUNCTIONS
# Address matcher will try to match <batch_size> records in one go to avoid exceeding memory limits.
batch_size = 10000
ref_batch_size = 150000
### Fuzzy match method
''' https://recordlinkage.readthedocs.io/en/latest/ref_df-compare.html#recordlinkage.compare.String
The Python Record Linkage Toolkit uses the jellyfish package for the Jaro, Jaro-Winkler, Levenshtein and Damerau- Levenshtein algorithms.
Options are [‘jaro’, ‘jarowinkler’, ‘levenshtein’, ‘damerau_levenshtein’, ‘qgram’, ‘cosine’, ‘smith_waterman’, ‘lcs’]
Comparison of some of the Jellyfish string comparison methods: https://manpages.debian.org/testing/python-jellyfish-doc/jellyfish.3.en.html '''
fuzzy_method = "jarowinkler"
# Required overall match score for all columns to count as a match
score_cut_off = 98.7 # 97.5
# I set a higher score cut off for nnet street blocking based on empirical data. Under this match value I was seeing errors. This value was (.99238), but set here to .995 to be maximally stringent. It is set in 'recordlinkage_funcs.py', score_based_match function
score_cut_off_nnet_street = 99.5 # 99.238
# If there are no numbers in the address, then the matcher needs to get a perfect score (otherwise too many issues).
no_number_fuzzy_match_limit = 100
# Reference data 'official' column names
ref_address_cols = ["Organisation", "SaoStartNumber", "SaoStartSuffix", "SaoEndNumber", "SaoEndSuffix",
"SaoText", "PaoStartNumber", "PaoStartSuffix", "PaoEndNumber",
"PaoEndSuffix", "PaoText", "Street", "PostTown", "Postcode"]
# Create a list of matching variables. Text columns will be fuzzy matched.
matching_variables = ref_address_cols
text_columns = ["Organisation", "PaoText", "Street", "PostTown", "Postcode"]
# Modify relative importance of columns (weights) for the recordlinkage part of the match. Modify weighting for scores - Town and AdministrativeArea are not very important as we have postcode. Street number and name are important
Organisation_weight = 0.1 # Organisation weight is very low just to resolve tie breakers for very similar addresses
PaoStartNumber_weight = 2
SaoStartNumber_weight = 2
Street_weight = 2
PostTown_weight = 0
Postcode_weight = 0.5
AdministrativeArea_weight = 0
# -
weight_vals = [1] * len(ref_address_cols)
weight_keys = ref_address_cols
weights = {weight_keys[i]: weight_vals[i] for i in range(len(weight_keys))}
# +
# Modify weighting for scores - Town and AdministrativeArea are not very important as we have postcode. Street number and name are important
weights["Organisation"] = Organisation_weight
weights["SaoStartNumber"] = SaoStartNumber_weight
weights["PaoStartNumber"] = PaoStartNumber_weight
weights["Street"] = Street_weight
weights["PostTown"] = PostTown_weight
weights["Postcode"] = Postcode_weight
# Creating Pydantic basemodel class
class MatcherClass(BaseModel):
# Fuzzy/general attributes
fuzzy_scorer_used: str
fuzzy_match_limit: int
fuzzy_search_addr_limit: int
filter_to_lambeth_pcodes: bool
standardise: bool
suffix_used: str
# Neural net attributes
matching_variables: List[str]
model_dir_name: str
file_step_suffix: str
exported_model: List
fuzzy_method: str
score_cut_off: float
text_columns: List[str]
weights: dict
model_type: str
labels_list: List[str]
# These are variables that are added on later
# Pytorch optional variables
word_to_index: dict
cat_to_idx: dict
device: str
vocab: List[str]
# Join data
file_name: str
ref_name: str
search_df: pd.DataFrame
excluded_df: pd.DataFrame
pre_filter_search_df: pd.DataFrame
search_address_cols: List[str]
search_postcode_col: List[str]
search_df_key_field: str
ref_df: pd.DataFrame
ref_pre_filter: pd.DataFrame
ref_address_cols: List[str]
new_join_col: List[str]
#in_joincol_list: List[str]
existing_match_cols: List[str]
standard_llpg_format: List[str]
# Results attributes
match_results_output: pd.DataFrame
predict_df_nnet: pd.DataFrame
# Other attributes generated during training
compare_all_candidates: List[str]
diag_shortlist: List[str]
diag_best_match: List[str]
results_on_orig_df: pd.DataFrame
summary: str
output_summary: str
match_outputs_name: str
results_orig_df_name: str
search_df_after_stand: pd.DataFrame
ref_df_after_stand: pd.DataFrame
search_df_after_full_stand: pd.DataFrame
ref_df_after_full_stand: pd.DataFrame
search_df_after_stand_series: pd.Series
ref_df_after_stand_series: pd.Series
search_df_after_stand_series_full_stand: pd.Series
ref_df_after_stand_series_full_stand: pd.Series
# Abort flag if the matcher couldn't even get the results of the first match
abort_flag: bool
# This is to allow for Pandas DataFrame types as an argument
class Config:
# Allow for custom types such as Pandas DataFrames in the class
arbitrary_types_allowed = True
extra = 'allow'
# Disable protected namespaces to avoid conflicts
protected_namespaces = ()
# Creating an instance of MatcherClass
InitMatch = MatcherClass(
# Fuzzy/general attributes
fuzzy_scorer_used = fuzzy_scorer_used,
fuzzy_match_limit = fuzzy_match_limit,
fuzzy_search_addr_limit = fuzzy_search_addr_limit,
filter_to_lambeth_pcodes = filter_to_lambeth_pcodes,
standardise = standardise,
suffix_used = suffix_used,
# Neural net attributes
matching_variables = matching_variables,
model_dir_name = model_dir_name,
file_step_suffix = file_step_suffix,
exported_model = [exported_model],
fuzzy_method = fuzzy_method,
score_cut_off = score_cut_off,
text_columns = text_columns,
weights = weights,
model_type = model_type,
labels_list = labels_list,
# These are variables that are added on later
# Pytorch optional variables
word_to_index = word_to_index,
cat_to_idx = cat_to_idx,
device = device,
vocab = vocab,
# Join data
file_name = '',
ref_name = '',
df_name = '',
search_df = pd.DataFrame(),
excluded_df = pd.DataFrame(),
pre_filter_search_df = pd.DataFrame(),
search_df_not_matched = pd.DataFrame(),
search_df_cleaned = pd.DataFrame(),
search_address_cols = [],
search_postcode_col = [],
search_df_key_field = 'index',
ref_df = pd.DataFrame(),
ref_df_cleaned = pd.DataFrame(),
ref_pre_filter = pd.DataFrame(),
ref_address_cols = [],
new_join_col = [],
#in_joincol_list = [],
existing_match_cols = [],
standard_llpg_format = [],
# Results attributes
match_results_output = pd.DataFrame(),
predict_df_nnet = pd.DataFrame(),
# Other attributes generated during training
compare_all_candidates = [],
diag_shortlist = [],
diag_best_match = [],
results_on_orig_df = pd.DataFrame(),
summary = "",
output_summary = "",
match_outputs_name = "",
results_orig_df_name = "",
# Post dataset preparation variables
search_df_after_stand = pd.DataFrame(),
ref_df_after_stand = pd.DataFrame(),
search_df_after_stand_series = pd.Series(),
ref_df_after_stand_series = pd.Series(),
search_df_after_full_stand = pd.DataFrame(),
ref_df_after_full_stand = pd.DataFrame(),
search_df_after_stand_series_full_stand = pd.Series(),
ref_df_after_stand_series_full_stand = pd.Series(),
# Abort flag if the matcher couldn't even get the results of the first match
abort_flag = False
)