File size: 19,834 Bytes
99d6fba 7f029b5 99d6fba 63049fe a95ef9f 36a404e 352c02a 36a404e 759001a 2393537 e0fe055 d3ff2e2 f9e3451 759001a f9e3451 d3ff2e2 2754a2b 759001a b1c3d49 2393537 b1c3d49 2393537 b1c3d49 99d6fba 759001a 99d6fba d3ff2e2 2089141 d3ff2e2 2089141 d3ff2e2 2089141 d3ff2e2 2089141 99d6fba 3df8e40 99d6fba 4ce2224 99d6fba 4ce2224 99d6fba 4ce2224 99d6fba 3df8e40 99d6fba 7f029b5 99d6fba a95ef9f 99d6fba 63049fe a95ef9f 63049fe 739b386 352c02a 99d6fba 7f029b5 99d6fba 739b386 7f029b5 99d6fba 63049fe e0fe055 63049fe 352c02a 7f029b5 352c02a 7f029b5 739b386 352c02a 99d6fba 352c02a e0fe055 352c02a 99d6fba 352c02a 63049fe 352c02a 99d6fba 63049fe 7f029b5 63049fe 7f029b5 63049fe 7f029b5 63049fe 739b386 63049fe 739b386 7f029b5 63049fe 99d6fba 7f029b5 99d6fba a95ef9f 99d6fba 63049fe 99d6fba 63049fe 99d6fba 63049fe 99d6fba 63049fe 99d6fba 63049fe 99d6fba 63049fe 99d6fba ea0dd40 36a404e 99d6fba 36a404e a95ef9f 36a404e a95ef9f 36a404e 352c02a 36a404e 352c02a 36a404e 352c02a 36a404e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 |
import os
import re
import pandas as pd
import gradio as gr
import os
import shutil
import getpass
import gzip
import zipfile
import pickle
import numpy as np
from typing import List
# Openpyxl functions for output
from openpyxl import Workbook
from openpyxl.cell.text import InlineFont
from openpyxl.cell.rich_text import TextBlock, CellRichText
from openpyxl.styles import Font, Alignment
#from search_funcs.aws_functions import bucket_name
megabyte = 1024 * 1024 # Bytes in a megabyte
file_size_mb = 500 # Size in megabytes
file_size_bytes_500mb = megabyte * file_size_mb
def get_or_create_env_var(var_name, default_value):
# Get the environment variable if it exists
value = os.environ.get(var_name)
# If it doesn't exist, set it to the default value
if value is None:
os.environ[var_name] = default_value
value = default_value
return value
# Retrieving or setting output folder
output_folder = get_or_create_env_var('GRADIO_OUTPUT_FOLDER', 'output/')
print(f'The value of GRADIO_OUTPUT_FOLDER is {output_folder}')
# Retrieving or setting RUNNING_ON_APP_RUNNER (not used at the moment)
# running_on_app_runner_var = get_or_create_env_var('RUNNING_ON_APP_RUNNER', '0')
# print(f'The value of RUNNING_ON_APP_RUNNER is {running_on_app_runner_var}')
def ensure_output_folder_exists(output_folder):
"""Checks if the output folder exists, creates it if not."""
folder_name = output_folder
if not os.path.exists(folder_name):
# Create the folder if it doesn't exist
os.makedirs(folder_name)
print(f"Created the output folder:", folder_name)
else:
print(f"The output folder already exists:", folder_name)
async def get_connection_params(request: gr.Request):
base_folder = ""
if request:
#print("request user:", request.username)
#request_data = await request.json() # Parse JSON body
#print("All request data:", request_data)
#context_value = request_data.get('context')
#if 'context' in request_data:
# print("Request context dictionary:", request_data['context'])
# print("Request headers dictionary:", request.headers)
# print("All host elements", request.client)
# print("IP address:", request.client.host)
# print("Query parameters:", dict(request.query_params))
# To get the underlying FastAPI items you would need to use await and some fancy @ stuff for a live query: https://fastapi.tiangolo.com/vi/reference/request/
#print("Request dictionary to object:", request.request.body())
print("Session hash:", request.session_hash)
# Retrieving or setting CUSTOM_CLOUDFRONT_HEADER
CUSTOM_CLOUDFRONT_HEADER_var = get_or_create_env_var('CUSTOM_CLOUDFRONT_HEADER', '')
print(f'The value of CUSTOM_CLOUDFRONT_HEADER is {CUSTOM_CLOUDFRONT_HEADER_var}')
# Retrieving or setting CUSTOM_CLOUDFRONT_HEADER_VALUE
CUSTOM_CLOUDFRONT_HEADER_VALUE_var = get_or_create_env_var('CUSTOM_CLOUDFRONT_HEADER_VALUE', '')
print(f'The value of CUSTOM_CLOUDFRONT_HEADER_VALUE_var is {CUSTOM_CLOUDFRONT_HEADER_VALUE_var}')
if CUSTOM_CLOUDFRONT_HEADER_var and CUSTOM_CLOUDFRONT_HEADER_VALUE_var:
if CUSTOM_CLOUDFRONT_HEADER_var in request.headers:
supplied_cloudfront_custom_value = request.headers[CUSTOM_CLOUDFRONT_HEADER_var]
if supplied_cloudfront_custom_value == CUSTOM_CLOUDFRONT_HEADER_VALUE_var:
print("Custom Cloudfront header found:", supplied_cloudfront_custom_value)
else:
raise(ValueError, "Custom Cloudfront header value does not match expected value.")
# Get output save folder from 1 - username passed in from direct Cognito login, 2 - Cognito ID header passed through a Lambda authenticator, 3 - the session hash.
if request.username:
out_session_hash = request.username
base_folder = "user-files/"
elif 'x-cognito-id' in request.headers:
out_session_hash = request.headers['x-cognito-id']
base_folder = "user-files/"
print("Cognito ID found:", out_session_hash)
else:
out_session_hash = request.session_hash
base_folder = "temp-files/"
# print("Cognito ID not found. Using session hash as save folder:", out_session_hash)
output_folder = base_folder + out_session_hash + "/"
#if bucket_name:
# print("S3 output folder is: " + "s3://" + bucket_name + "/" + output_folder)
return out_session_hash, output_folder
else:
print("No session parameters found.")
return "",""
# Attempt to delete content of gradio temp folder
# def get_temp_folder_path():
# username = getpass.getuser()
# return os.path.join('C:\\Users', username, 'AppData\\Local\\Temp\\gradio')
def empty_folder(directory_path):
if not os.path.exists(directory_path):
#print(f"The directory {directory_path} does not exist. No temporary files from previous app use found to delete.")
return
for filename in os.listdir(directory_path):
file_path = os.path.join(directory_path, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
except Exception as e:
#print(f'Failed to delete {file_path}. Reason: {e}')
print('')
def get_file_path_end(file_path):
# First, get the basename of the file (e.g., "example.txt" from "/path/to/example.txt")
basename = os.path.basename(file_path)
# Then, split the basename and its extension and return only the basename without the extension
filename_without_extension, _ = os.path.splitext(basename)
#print(filename_without_extension)
return filename_without_extension
def get_file_path_end_with_ext(file_path):
match = re.search(r'(.*[\/\\])?(.+)$', file_path)
filename_end = match.group(2) if match else ''
return filename_end
def ensure_output_folder_exists(output_folder):
"""Checks if the output folder exists, creates it if not."""
folder_name = output_folder
if not os.path.exists(folder_name):
# Create the folder if it doesn't exist
os.makedirs(folder_name)
print(f"Created the output folder:", folder_name)
else:
print(f"The output folder already exists:", folder_name)
def detect_file_type(filename):
"""Detect the file type based on its extension."""
if (filename.endswith('.csv')) | (filename.endswith('.csv.gz')) | (filename.endswith('.zip')):
return 'csv'
elif filename.endswith('.xlsx'):
return 'xlsx'
elif filename.endswith('.parquet'):
return 'parquet'
elif filename.endswith('.pkl.gz'):
return 'pkl.gz'
#elif filename.endswith('.gz'):
# return 'gz'
else:
raise ValueError("Unsupported file type.")
def read_file(filename):
"""Read the file based on its detected type."""
file_type = detect_file_type(filename)
print("Loading in file")
if file_type == 'csv':
file = pd.read_csv(filename, low_memory=False).reset_index()#.drop(["index", "Unnamed: 0"], axis=1, errors="ignore")
elif file_type == 'xlsx':
file = pd.read_excel(filename).reset_index()#.drop(["index", "Unnamed: 0"], axis=1, errors="ignore")
elif file_type == 'parquet':
file = pd.read_parquet(filename).reset_index()#.drop(["index", "Unnamed: 0"], axis=1, errors="ignore")
elif file_type == 'pkl.gz':
with gzip.open(filename, 'rb') as file:
file = pickle.load(file)
#elif file_type == ".gz":
# with gzip.open(filename, 'rb') as file:
# file = pickle.load(file)
print("File load complete")
return file
def process_zip_files(file_list, progress=gr.Progress(track_tqdm=True)):
"""
Processes a list of file names, unzipping any ZIP files found
and adding the extracted file names to the list.
Args:
file_list: A list of file names (strings).
"""
progress(0.1, desc="Unzipping zip files")
i = 0
while i < len(file_list): # Use 'while' for dynamic list changes
file_path = file_list[i]
if file_path.endswith(".zip"):
try:
zip_dir = os.path.dirname(file_path) or "." # Get zip file's directory or use current if none
with zipfile.ZipFile(file_path, 'r') as zip_ref:
zip_ref.extractall(zip_dir) # Extract to zip's directory
#print("List of files in zip:", zip_ref.namelist())
extracted_files = [os.path.join(zip_dir, name) for name in zip_ref.namelist()]
file_list.extend(extracted_files)
except zipfile.BadZipFile:
print(f"Warning: '{file_path}' is not a valid zip file.")
i += 1
file_list = [file for file in file_list if not file.endswith(".zip")]
print("file_list after files in zip extracted:", file_list)
return file_list
def initial_data_load(in_file:List[str], progress = gr.Progress(track_tqdm=True)):
'''
When file is loaded, update the column dropdown choices and relevant state variables
'''
new_choices = []
concat_choices = []
index_load = None
embed_load = np.array([])
tokenised_load = []
out_message = ""
current_source = ""
df = pd.DataFrame()
file_list = [string.name for string in in_file]
# If a zip file is loaded, unzip it and add the file names to the file_list
file_list = process_zip_files(file_list)
#print("File_list that makes it to main data load function:", file_list)
progress(0.3, desc="Loading in data files")
data_file_names = [string for string in file_list if "tokenised" not in string.lower() and "npz" not in string.lower() and "search_index" not in string.lower()]
print("Data file names:", data_file_names)
if not data_file_names:
out_message = "Please load in at least one csv/Excel/parquet data file."
print(out_message)
return gr.Dropdown(choices=concat_choices), gr.Dropdown(choices=concat_choices), pd.DataFrame(), pd.DataFrame(), index_load, embed_load, tokenised_load, out_message, None
# This if you have loaded in a documents object for the semantic search
if "pkl" in data_file_names[0]:
print("Document object for semantic search:", data_file_names[0])
df = read_file(data_file_names[0])
new_choices = list(df[0].metadata.keys()) #["Documents"] #["page_contents"] +
current_source = get_file_path_end_with_ext(data_file_names[0])
# This if you have loaded in a csv/parquets/xlsx
else:
for file in data_file_names:
current_source = current_source + get_file_path_end_with_ext(file) + " "
# Get the size of the file
print("Checking file size")
file_size = os.path.getsize(file)
if file_size > file_size_bytes_500mb:
out_message = "Data file greater than 500mb in size. Please use smaller sizes."
print(out_message)
return gr.Dropdown(choices=concat_choices), gr.Dropdown(choices=concat_choices), pd.DataFrame(), pd.DataFrame(), index_load, embed_load, tokenised_load, out_message, None
df_new = read_file(file)
df = pd.concat([df, df_new], ignore_index = True)
new_choices = list(df.columns)
concat_choices.extend(new_choices)
progress(0.6, desc="Loading in embedding/search index files")
# Check if there is a search index file already
index_file_names = [string for string in file_list if ".gz" in string.lower()]
if index_file_names:
index_file_name = index_file_names[0]
print("Search index file name found:", index_file_name)
index_load = read_file(index_file_name)
embeddings_file_names = [string for string in file_list if "embedding" in string.lower()]
if embeddings_file_names:
print("Loading embeddings from file.")
embed_load = np.load(embeddings_file_names[0])['arr_0']
# If embedding files have 'super_compress' in the title, they have been multiplied by 100 before save
if "compress" in embeddings_file_names[0]:
embed_load /= 100
else:
embed_load = np.array([])
tokenised_file_names = [string for string in file_list if "tokenised" in string.lower()]
if tokenised_file_names:
tokenised_load = read_file(tokenised_file_names[0])
out_message = "Initial data load successful. Next, choose a data column to search in the drop down above, then click 'Load data'"
print(out_message)
return gr.Dropdown(choices=concat_choices), gr.Dropdown(choices=concat_choices), df, df, index_load, embed_load, tokenised_load, out_message, current_source, file_list
def put_columns_in_join_df(in_file:str):
'''
When file is loaded, update the column dropdown choices
'''
new_df = pd.DataFrame()
#print("in_bm25_column")
new_choices = []
concat_choices = []
new_df = read_file(in_file.name)
new_choices = list(new_df.columns)
#print(new_choices)
concat_choices.extend(new_choices)
out_message = "File load successful. Now select a column to join below."
return gr.Dropdown(choices=concat_choices), new_df, out_message
def load_spacy_model():
# Load the SpaCy model
from spacy.cli.download import download
import spacy
spacy.prefer_gpu()
try:
import en_core_web_sm
nlp = en_core_web_sm.load()
print("Successfully imported spaCy model")
except:
download("en_core_web_sm")
nlp = spacy.load("en_core_web_sm")
print("Successfully imported spaCy model")
return nlp
def display_info(info_component):
gr.Info(info_component)
def highlight_found_text(search_text: str, full_text: str) -> str:
"""
Highlights occurrences of search_text within full_text.
Parameters:
- search_text (str): The text to be searched for within full_text.
- full_text (str): The text within which search_text occurrences will be highlighted.
Returns:
- str: A string with occurrences of search_text highlighted.
Example:
>>> highlight_found_text("world", "Hello, world! This is a test. Another world awaits.")
'Hello, <mark style="color:black;">world</mark>! This is a test. Another <mark style="color:black;">world</mark> awaits.'
"""
def extract_text_from_input(text, i=0):
if isinstance(text, str):
return text
elif isinstance(text, list):
return text[i][0]
else:
return ""
def extract_search_text_from_input(text):
if isinstance(text, str):
return text
elif isinstance(text, list):
return text[-1][1]
else:
return ""
full_text = extract_text_from_input(full_text)
search_text = extract_search_text_from_input(search_text)
sections = search_text.split(sep = " ")
found_positions = {}
for x in sections:
text_start_pos = 0
while text_start_pos != -1:
text_start_pos = full_text.find(x, text_start_pos)
if text_start_pos != -1:
found_positions[text_start_pos] = text_start_pos + len(x)
text_start_pos += 1
# Combine overlapping or adjacent positions
sorted_starts = sorted(found_positions.keys())
combined_positions = []
if sorted_starts:
current_start, current_end = sorted_starts[0], found_positions[sorted_starts[0]]
for start in sorted_starts[1:]:
if start <= (current_end + 10):
current_end = max(current_end, found_positions[start])
else:
combined_positions.append((current_start, current_end))
current_start, current_end = start, found_positions[start]
combined_positions.append((current_start, current_end))
# Construct pos_tokens
pos_tokens = []
prev_end = 0
for start, end in combined_positions:
if end-start > 1: # Only combine if there is a significant amount of matched text. Avoids picking up single words like 'and' etc.
pos_tokens.append(full_text[prev_end:start])
pos_tokens.append('<mark style="color:black;">' + full_text[start:end] + '</mark>')
prev_end = end
pos_tokens.append(full_text[prev_end:])
return "".join(pos_tokens), combined_positions
def create_rich_text_cell_from_positions(full_text: str, combined_positions: list[tuple[int, int]]) -> CellRichText:
"""
Create a rich text cell with highlighted positions.
This function takes the full text and a list of combined positions, and creates a rich text cell
with the specified positions highlighted in red.
Parameters:
full_text (str): The full text to be processed.
combined_positions (list[tuple[int, int]]): A list of tuples representing the start and end positions to be highlighted.
Returns:
CellRichText: The created rich text cell with highlighted positions.
"""
# Construct pos_tokens
red = InlineFont(color='00FF0000')
rich_text_cell = CellRichText()
prev_end = 0
for start, end in combined_positions:
if end-start > 1: # Only combine if there is a significant amount of matched text. Avoids picking up single words like 'and' etc.
rich_text_cell.append(full_text[prev_end:start])
rich_text_cell.append(TextBlock(red, full_text[start:end]))
prev_end = end
rich_text_cell.append(full_text[prev_end:])
return rich_text_cell
def create_highlighted_excel_wb(df: pd.DataFrame, search_text: str, column_to_highlight: str) -> Workbook:
"""
Create a new Excel workbook with highlighted search text.
This function takes a DataFrame, a search text, and a column name to highlight. It creates a new Excel workbook,
highlights the occurrences of the search text in the specified column, and returns the workbook.
Parameters:
df (pd.DataFrame): The DataFrame containing the data to be written to the Excel workbook.
search_text (str): The text to search for and highlight in the specified column.
column_to_highlight (str): The name of the column in which to highlight the search text.
Returns:
Workbook: The created Excel workbook with highlighted search text.
"""
# Create a new Excel workbook
wb = Workbook()
sheet = wb.active
# Insert headers into the worksheet, make bold
sheet.append(df.columns.tolist())
for cell in sheet[1]:
cell.font = Font(bold=True)
column_width = 150 # Adjust as needed
relevant_column_no = (df.columns == column_to_highlight).argmax() + 1
print(relevant_column_no)
sheet.column_dimensions[sheet.cell(row=1, column=relevant_column_no).column_letter].width = column_width
# Find substrings in cells and highlight
for r_idx, row in enumerate(df.itertuples(), start=2):
for c_idx, cell_value in enumerate(row[1:], start=1):
sheet.cell(row=r_idx, column=c_idx, value=cell_value)
if df.columns[c_idx - 1] == column_to_highlight:
html_text, combined_positions = highlight_found_text(search_text, cell_value)
sheet.cell(row=r_idx, column=c_idx).value = create_rich_text_cell_from_positions(cell_value, combined_positions)
sheet.cell(row=r_idx, column=c_idx).alignment = Alignment(wrap_text=True)
return wb |