File size: 17,205 Bytes
99d6fba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3df8e40
99d6fba
3df8e40
 
99d6fba
 
 
 
 
 
 
 
 
 
200480d
99d6fba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
200480d
99d6fba
 
200480d
99d6fba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
200480d
99d6fba
 
 
 
 
 
 
 
 
 
 
200480d
99d6fba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
200480d
 
99d6fba
3df8e40
 
99d6fba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
200480d
99d6fba
 
200480d
99d6fba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
import os
import time
import pandas as pd
from typing import Type
import gradio as gr
import numpy as np
from datetime import datetime
import accelerate

today_rev = datetime.now().strftime("%Y%m%d")

from transformers import AutoModel

from torch import cuda, backends, tensor, mm
from search_funcs.helper_functions import read_file

# Check for torch cuda
print("Is CUDA enabled? ", cuda.is_available())
print("Is a CUDA device available on this computer?", backends.cudnn.enabled)
if cuda.is_available():
    torch_device = "cuda"
    os.system("nvidia-smi")

else: 
    torch_device =  "cpu"

print("Device used is: ", torch_device)

#from search_funcs.helper_functions import get_file_path_end

PandasDataFrame = Type[pd.DataFrame]

# Load embeddings
# Pinning a Jina revision for security purposes: https://www.baseten.co/blog/pinning-ml-model-revisions-for-compatibility-and-security/
# Save Jina model locally as described here: https://huggingface.co/jinaai/jina-embeddings-v2-base-en/discussions/29
embeddings_name = "jinaai/jina-embeddings-v2-small-en"
local_embeddings_location = "model/jina/"
revision_choice = "b811f03af3d4d7ea72a7c25c802b21fc675a5d99"

try:
    embeddings_model = AutoModel.from_pretrained(local_embeddings_location, revision = revision_choice, trust_remote_code=True,local_files_only=True, device_map="auto")
except:
    embeddings_model = AutoModel.from_pretrained(embeddings_name, revision = revision_choice, trust_remote_code=True, device_map="auto")


# Chroma support is currently deprecated
# Import Chroma and instantiate a client. The default Chroma client is ephemeral, meaning it will not save to disk.
#import chromadb
#from chromadb.config import Settings
#from typing_extensions import Protocol
#from chromadb import Documents, EmbeddingFunction, Embeddings

# Remove Chroma database file. If it exists as it can cause issues
#chromadb_file = "chroma.sqlite3"

#if os.path.isfile(chromadb_file):
#    os.remove(chromadb_file)
def get_file_path_end(file_path):
    # First, get the basename of the file (e.g., "example.txt" from "/path/to/example.txt")
    basename = os.path.basename(file_path)
    
    # Then, split the basename and its extension and return only the basename without the extension
    filename_without_extension, _ = os.path.splitext(basename)

    #print(filename_without_extension)
    
    return filename_without_extension

def load_embeddings(embeddings_name = embeddings_name):
    '''
    Load embeddings model and create a global variable based on it.
    '''

    # Import Chroma and instantiate a client. The default Chroma client is ephemeral, meaning it will not save to disk.
    
    #else: 
    embeddings_func = AutoModel.from_pretrained(embeddings_name, trust_remote_code=True, device_map="auto")

    global embeddings

    embeddings = embeddings_func

    return embeddings

def docs_to_jina_embed_np_array(docs_out, in_file, return_intermediate_files = "No", embeddings_super_compress = "No", embeddings = embeddings_model, progress=gr.Progress()):
    '''
    Takes a Langchain document class and saves it into a Chroma sqlite file.
    '''

    print(f"> Total split documents: {len(docs_out)}")

    #print(docs_out)

    page_contents = [doc.page_content for doc in docs_out]

    ## Load in pre-embedded file if exists
    file_list = [string.name for string in in_file]

    #print(file_list)

    embeddings_file_names = [string.lower() for string in file_list if "embedding" in string.lower()]
    data_file_names = [string.lower() for string in file_list if "tokenised" not in string.lower() and "npz" not in string.lower()]# and "gz" not in string.lower()]
    data_file_name = data_file_names[0]
    data_file_name_no_ext = get_file_path_end(data_file_name)

    out_message = "Document processing complete. Ready to search."

    if embeddings_file_names:
        print("Loading embeddings from file.")
        embeddings_out = np.load(embeddings_file_names[0])['arr_0']

        # If embedding files have 'super_compress' in the title, they have been multiplied by 100 before save
        if "compress" in embeddings_file_names[0]:
            embeddings_out /= 100

        # print("embeddings loaded: ", embeddings_out)

    if not embeddings_file_names:
        tic = time.perf_counter()
        print("Starting to embed documents.")
        #embeddings_list = []
        #for page in progress.tqdm(page_contents, desc = "Preparing search index", unit = "rows"):
        #    embeddings_list.append(embeddings.encode(sentences=page, max_length=1024).tolist())

        embeddings_out = embeddings.encode(sentences=page_contents, max_length=1024, show_progress_bar = True, batch_size = 32) # For Jina embeddings
        #embeddings_list = embeddings.encode(sentences=page_contents, normalize_embeddings=True).tolist() # For BGE embeddings
        #embeddings_list = embeddings.encode(sentences=page_contents).tolist() # For minilm

        toc = time.perf_counter()
        time_out = f"The embedding took {toc - tic:0.1f} seconds"
        print(time_out)

        # If you want to save your files for next time
        if return_intermediate_files == "Yes":
            if embeddings_super_compress == "No":
                semantic_search_file_name = data_file_name_no_ext + '_' + 'embeddings.npz'
                np.savez_compressed(semantic_search_file_name, embeddings_out)
            else:
                semantic_search_file_name = data_file_name_no_ext + '_' + 'embedding_compress.npz'
                embeddings_out_round = np.round(embeddings_out, 3) 
                embeddings_out_round *= 100 # Rounding not currently used
                np.savez_compressed(semantic_search_file_name, embeddings_out_round)

            return out_message, embeddings_out, semantic_search_file_name

        return out_message, embeddings_out, None
    
    print(out_message)

    return out_message, embeddings_out, None#, None

def process_data_from_scores_df(df_docs, in_join_file, out_passages, vec_score_cut_off, vec_weight, orig_df_col, in_join_column, search_df_join_column):

    def create_docs_keep_from_df(df):
        dict_out = {'ids' : [df['ids']],
                    'documents': [df['documents']],
                    'metadatas': [df['metadatas']],
                    'distances': [round(df['distances'].astype(float), 4)],
                    'embeddings': None
                    }
        return dict_out
        
    # Prepare the DataFrame by transposing
    #df_docs = df#.apply(lambda x: x.explode()).reset_index(drop=True)

    # Keep only documents with a certain score

    #print(df_docs)
    
    docs_scores = df_docs["distances"] #.astype(float)

    # Only keep sources that are sufficiently relevant (i.e. similarity search score below threshold below)
    score_more_limit = df_docs.loc[docs_scores > vec_score_cut_off, :]
    #docs_keep = create_docs_keep_from_df(score_more_limit) #list(compress(docs, score_more_limit))

    #print(docs_keep)

    if score_more_limit.empty:
        return pd.DataFrame()

    # Only keep sources that are at least 100 characters long
    docs_len = score_more_limit["documents"].str.len() >= 100

    #print(docs_len)

    length_more_limit = score_more_limit.loc[docs_len == True, :] #pd.Series(docs_len) >= 100
    #docs_keep = create_docs_keep_from_df(length_more_limit) #list(compress(docs_keep, length_more_limit))

    #print(length_more_limit)

    if length_more_limit.empty:
        return pd.DataFrame()
            
    length_more_limit['ids'] = length_more_limit['ids'].astype(int)

    #length_more_limit.to_csv("length_more_limit.csv", index = None)

    # Explode the 'metadatas' dictionary into separate columns
    df_metadata_expanded = length_more_limit['metadatas'].apply(pd.Series)

    #print(length_more_limit)
    #print(df_metadata_expanded)

    # Concatenate the original DataFrame with the expanded metadata DataFrame
    results_df_out = pd.concat([length_more_limit.drop('metadatas', axis=1), df_metadata_expanded], axis=1)

    results_df_out = results_df_out.rename(columns={"documents":orig_df_col})

    results_df_out = results_df_out.drop(["page_section", "row", "source", "id"], axis=1, errors="ignore")
    results_df_out['distances'] = round(results_df_out['distances'].astype(float), 3)

    # Join back to original df
    # results_df_out = orig_df.merge(length_more_limit[['ids', 'distances']], left_index = True, right_on = "ids", how="inner").sort_values("distances")

    # Join on additional files
    if in_join_file:
        join_filename = in_join_file.name

        # Import data
        join_df = read_file(join_filename)
        join_df[in_join_column] = join_df[in_join_column].astype(str).str.replace("\.0$","", regex=True)

        # Duplicates dropped so as not to expand out dataframe
        join_df = join_df.drop_duplicates(in_join_column)

        results_df_out[search_df_join_column] = results_df_out[search_df_join_column].astype(str).str.replace("\.0$","", regex=True)

        results_df_out = results_df_out.merge(join_df,left_on=search_df_join_column, right_on=in_join_column, how="left").drop(in_join_column, axis=1)

    return results_df_out

def jina_simple_retrieval(query_str:str, vectorstore, docs, orig_df_col:str, k_val:int, out_passages:int,
                           vec_score_cut_off:float, vec_weight:float, in_join_file = None, in_join_column = None, search_df_join_column = None, device = torch_device, embeddings = embeddings_model, progress=gr.Progress()): # ,vectorstore, embeddings

    # print("vectorstore loaded: ", vectorstore)

    # Convert it to a PyTorch tensor and transfer to GPU
    vectorstore_tensor = tensor(vectorstore).to(device)

    # Load the sentence transformer model and move it to GPU
    embeddings = embeddings.to(device)

    # Encode the query using the sentence transformer and convert to a PyTorch tensor
    query = embeddings.encode(query_str)
    query_tensor = tensor(query).to(device)

    if query_tensor.dim() == 1:
        query_tensor = query_tensor.unsqueeze(0)  # Reshape to 2D with one row

    # Normalize the query tensor and vectorstore tensor
    query_norm = query_tensor / query_tensor.norm(dim=1, keepdim=True)
    vectorstore_norm = vectorstore_tensor / vectorstore_tensor.norm(dim=1, keepdim=True)

    # Calculate cosine similarities (batch processing)
    cosine_similarities = mm(query_norm, vectorstore_norm.T)

    # Flatten the tensor to a 1D array
    cosine_similarities = cosine_similarities.flatten()

    # Convert to a NumPy array if it's still a PyTorch tensor
    cosine_similarities = cosine_similarities.cpu().numpy()

    # Create a Pandas Series
    cosine_similarities_series = pd.Series(cosine_similarities)

    # Pull out relevent info from docs
    page_contents = [doc.page_content for doc in docs]
    page_meta = [doc.metadata for doc in docs]
    ids_range = range(0,len(page_contents)) 
    ids = [str(element) for element in ids_range]

    df_docs = pd.DataFrame(data={"ids": ids,
                                "documents": page_contents,
                                    "metadatas":page_meta,
                                    "distances":cosine_similarities_series}).sort_values("distances", ascending=False).iloc[0:k_val,:]

    
    results_df_out = process_data_from_scores_df(df_docs, in_join_file, out_passages, vec_score_cut_off, vec_weight, orig_df_col, in_join_column, search_df_join_column)

    # If nothing found, return error message
    if results_df_out.empty:
        return 'No result found!', None
    
    query_str_file = query_str.replace(" ", "_")

    results_df_name = "semantic_search_result_" + today_rev + "_" +  query_str_file + ".xlsx"
    results_df_out.to_excel(results_df_name, index= None)
    results_first_text = results_df_out.iloc[0, 1]

    return results_first_text, results_df_name

# Deprecated Chroma functions - kept just in case needed in future.

def docs_to_chroma_save_deprecated(docs_out, embeddings = embeddings_model, progress=gr.Progress()):
    '''
    Takes a Langchain document class and saves it into a Chroma sqlite file. Not currently used.
    '''

    print(f"> Total split documents: {len(docs_out)}")

    #print(docs_out)

    page_contents = [doc.page_content for doc in docs_out]
    page_meta = [doc.metadata for doc in docs_out]
    ids_range = range(0,len(page_contents)) 
    ids = [str(element) for element in ids_range]

    tic = time.perf_counter()
    #embeddings_list = []
    #for page in progress.tqdm(page_contents, desc = "Preparing search index", unit = "rows"):
    #    embeddings_list.append(embeddings.encode(sentences=page, max_length=1024).tolist())

    embeddings_list = embeddings.encode(sentences=page_contents, max_length=256, show_progress_bar = True, batch_size = 32).tolist() # For Jina embeddings
    #embeddings_list = embeddings.encode(sentences=page_contents, normalize_embeddings=True).tolist() # For BGE embeddings
    #embeddings_list = embeddings.encode(sentences=page_contents).tolist() # For minilm

    toc = time.perf_counter()
    time_out = f"The embedding took {toc - tic:0.1f} seconds"

    #pd.Series(embeddings_list).to_csv("embeddings_out.csv")

    # Jina tiny
    # This takes about 300 seconds for 240,000 records = 800 / second, 1024 max length
    # For 50k records:
    # 61 seconds at 1024 max length
    # 55 seconds at 512 max length
    # 43 seconds at 256 max length
    # 31 seconds at 128 max length

    # The embedding took 1372.5 seconds at 256 max length for 655,020 case notes

    # BGE small
    # 96 seconds for 50k records at 512 length

    # all-MiniLM-L6-v2
    # 42.5 seconds at (256?) max length

    # paraphrase-MiniLM-L3-v2
    # 22 seconds for 128 max length


    print(time_out)

    chroma_tic = time.perf_counter()

    # Create a new Chroma collection to store the documents and metadata. We don't need to specify an embedding fuction, and the default will be used.
    client = chromadb.PersistentClient(path="./last_year", settings=Settings(
    anonymized_telemetry=False))

    try:
        print("Deleting existing collection.")
        #collection = client.get_collection(name="my_collection")
        client.delete_collection(name="my_collection")
        print("Creating new collection.")
        collection = client.create_collection(name="my_collection")
    except: 
        print("Creating new collection.")
        collection = client.create_collection(name="my_collection")

    # Match batch size is about 40,000, so add that amount in a loop
    def create_batch_ranges(in_list, batch_size=40000):
        total_rows = len(in_list)
        ranges = []
        
        for start in range(0, total_rows, batch_size):
            end = min(start + batch_size, total_rows)
            ranges.append(range(start, end))
        
        return ranges

    batch_ranges = create_batch_ranges(embeddings_list)
    print(batch_ranges)

    for row_range in progress.tqdm(batch_ranges, desc = "Creating vector database", unit = "batches of 40,000 rows"):
    
        collection.add(
        documents = page_contents[row_range[0]:row_range[-1]],
        embeddings = embeddings_list[row_range[0]:row_range[-1]],
        metadatas = page_meta[row_range[0]:row_range[-1]],
        ids = ids[row_range[0]:row_range[-1]])
        #print("Here")
        
    # print(collection.count())
    

    #chatf.vectorstore = vectorstore_func

    chroma_toc = time.perf_counter()

    chroma_time_out = f"Loading to Chroma db took {chroma_toc - chroma_tic:0.1f} seconds"
    print(chroma_time_out)

    out_message = "Document processing complete"

    return out_message, collection

def chroma_retrieval_deprecated(query_str:str, vectorstore, docs, orig_df_col:str, k_val:int, out_passages:int,
                           vec_score_cut_off:float, vec_weight:float, in_join_file = None, in_join_column = None, search_df_join_column = None, embeddings = embeddings_model): # ,vectorstore, embeddings

            query = embeddings.encode(query_str).tolist()

            docs = vectorstore.query(
            query_embeddings=query,
            n_results= k_val # No practical limit on number of responses returned
            #where={"metadata_field": "is_equal_to_this"},
            #where_document={"$contains":"search_string"}
            )

            df_docs = pd.DataFrame(data={'ids': docs['ids'][0],
                                    'documents': docs['documents'][0],
                                    'metadatas':docs['metadatas'][0],
                                    'distances':docs['distances'][0]#,                                    
                                    #'embeddings': docs['embeddings']
                                    })
            
            results_df_out = process_data_from_scores_df(df_docs, in_join_file, out_passages, vec_score_cut_off, vec_weight, orig_df_col, in_join_column, search_df_join_column)

            results_df_name = "semantic_search_result.csv"
            results_df_out.to_csv(results_df_name, index= None)
            results_first_text = results_df_out[orig_df_col].iloc[0]

            return results_first_text, results_df_name