Spaces:
Sleeping
Sleeping
File size: 17,205 Bytes
99d6fba 3df8e40 99d6fba 3df8e40 99d6fba 200480d 99d6fba 200480d 99d6fba 200480d 99d6fba 200480d 99d6fba 200480d 99d6fba 200480d 99d6fba 3df8e40 99d6fba 200480d 99d6fba 200480d 99d6fba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
import os
import time
import pandas as pd
from typing import Type
import gradio as gr
import numpy as np
from datetime import datetime
import accelerate
today_rev = datetime.now().strftime("%Y%m%d")
from transformers import AutoModel
from torch import cuda, backends, tensor, mm
from search_funcs.helper_functions import read_file
# Check for torch cuda
print("Is CUDA enabled? ", cuda.is_available())
print("Is a CUDA device available on this computer?", backends.cudnn.enabled)
if cuda.is_available():
torch_device = "cuda"
os.system("nvidia-smi")
else:
torch_device = "cpu"
print("Device used is: ", torch_device)
#from search_funcs.helper_functions import get_file_path_end
PandasDataFrame = Type[pd.DataFrame]
# Load embeddings
# Pinning a Jina revision for security purposes: https://www.baseten.co/blog/pinning-ml-model-revisions-for-compatibility-and-security/
# Save Jina model locally as described here: https://huggingface.co/jinaai/jina-embeddings-v2-base-en/discussions/29
embeddings_name = "jinaai/jina-embeddings-v2-small-en"
local_embeddings_location = "model/jina/"
revision_choice = "b811f03af3d4d7ea72a7c25c802b21fc675a5d99"
try:
embeddings_model = AutoModel.from_pretrained(local_embeddings_location, revision = revision_choice, trust_remote_code=True,local_files_only=True, device_map="auto")
except:
embeddings_model = AutoModel.from_pretrained(embeddings_name, revision = revision_choice, trust_remote_code=True, device_map="auto")
# Chroma support is currently deprecated
# Import Chroma and instantiate a client. The default Chroma client is ephemeral, meaning it will not save to disk.
#import chromadb
#from chromadb.config import Settings
#from typing_extensions import Protocol
#from chromadb import Documents, EmbeddingFunction, Embeddings
# Remove Chroma database file. If it exists as it can cause issues
#chromadb_file = "chroma.sqlite3"
#if os.path.isfile(chromadb_file):
# os.remove(chromadb_file)
def get_file_path_end(file_path):
# First, get the basename of the file (e.g., "example.txt" from "/path/to/example.txt")
basename = os.path.basename(file_path)
# Then, split the basename and its extension and return only the basename without the extension
filename_without_extension, _ = os.path.splitext(basename)
#print(filename_without_extension)
return filename_without_extension
def load_embeddings(embeddings_name = embeddings_name):
'''
Load embeddings model and create a global variable based on it.
'''
# Import Chroma and instantiate a client. The default Chroma client is ephemeral, meaning it will not save to disk.
#else:
embeddings_func = AutoModel.from_pretrained(embeddings_name, trust_remote_code=True, device_map="auto")
global embeddings
embeddings = embeddings_func
return embeddings
def docs_to_jina_embed_np_array(docs_out, in_file, return_intermediate_files = "No", embeddings_super_compress = "No", embeddings = embeddings_model, progress=gr.Progress()):
'''
Takes a Langchain document class and saves it into a Chroma sqlite file.
'''
print(f"> Total split documents: {len(docs_out)}")
#print(docs_out)
page_contents = [doc.page_content for doc in docs_out]
## Load in pre-embedded file if exists
file_list = [string.name for string in in_file]
#print(file_list)
embeddings_file_names = [string.lower() for string in file_list if "embedding" in string.lower()]
data_file_names = [string.lower() for string in file_list if "tokenised" not in string.lower() and "npz" not in string.lower()]# and "gz" not in string.lower()]
data_file_name = data_file_names[0]
data_file_name_no_ext = get_file_path_end(data_file_name)
out_message = "Document processing complete. Ready to search."
if embeddings_file_names:
print("Loading embeddings from file.")
embeddings_out = np.load(embeddings_file_names[0])['arr_0']
# If embedding files have 'super_compress' in the title, they have been multiplied by 100 before save
if "compress" in embeddings_file_names[0]:
embeddings_out /= 100
# print("embeddings loaded: ", embeddings_out)
if not embeddings_file_names:
tic = time.perf_counter()
print("Starting to embed documents.")
#embeddings_list = []
#for page in progress.tqdm(page_contents, desc = "Preparing search index", unit = "rows"):
# embeddings_list.append(embeddings.encode(sentences=page, max_length=1024).tolist())
embeddings_out = embeddings.encode(sentences=page_contents, max_length=1024, show_progress_bar = True, batch_size = 32) # For Jina embeddings
#embeddings_list = embeddings.encode(sentences=page_contents, normalize_embeddings=True).tolist() # For BGE embeddings
#embeddings_list = embeddings.encode(sentences=page_contents).tolist() # For minilm
toc = time.perf_counter()
time_out = f"The embedding took {toc - tic:0.1f} seconds"
print(time_out)
# If you want to save your files for next time
if return_intermediate_files == "Yes":
if embeddings_super_compress == "No":
semantic_search_file_name = data_file_name_no_ext + '_' + 'embeddings.npz'
np.savez_compressed(semantic_search_file_name, embeddings_out)
else:
semantic_search_file_name = data_file_name_no_ext + '_' + 'embedding_compress.npz'
embeddings_out_round = np.round(embeddings_out, 3)
embeddings_out_round *= 100 # Rounding not currently used
np.savez_compressed(semantic_search_file_name, embeddings_out_round)
return out_message, embeddings_out, semantic_search_file_name
return out_message, embeddings_out, None
print(out_message)
return out_message, embeddings_out, None#, None
def process_data_from_scores_df(df_docs, in_join_file, out_passages, vec_score_cut_off, vec_weight, orig_df_col, in_join_column, search_df_join_column):
def create_docs_keep_from_df(df):
dict_out = {'ids' : [df['ids']],
'documents': [df['documents']],
'metadatas': [df['metadatas']],
'distances': [round(df['distances'].astype(float), 4)],
'embeddings': None
}
return dict_out
# Prepare the DataFrame by transposing
#df_docs = df#.apply(lambda x: x.explode()).reset_index(drop=True)
# Keep only documents with a certain score
#print(df_docs)
docs_scores = df_docs["distances"] #.astype(float)
# Only keep sources that are sufficiently relevant (i.e. similarity search score below threshold below)
score_more_limit = df_docs.loc[docs_scores > vec_score_cut_off, :]
#docs_keep = create_docs_keep_from_df(score_more_limit) #list(compress(docs, score_more_limit))
#print(docs_keep)
if score_more_limit.empty:
return pd.DataFrame()
# Only keep sources that are at least 100 characters long
docs_len = score_more_limit["documents"].str.len() >= 100
#print(docs_len)
length_more_limit = score_more_limit.loc[docs_len == True, :] #pd.Series(docs_len) >= 100
#docs_keep = create_docs_keep_from_df(length_more_limit) #list(compress(docs_keep, length_more_limit))
#print(length_more_limit)
if length_more_limit.empty:
return pd.DataFrame()
length_more_limit['ids'] = length_more_limit['ids'].astype(int)
#length_more_limit.to_csv("length_more_limit.csv", index = None)
# Explode the 'metadatas' dictionary into separate columns
df_metadata_expanded = length_more_limit['metadatas'].apply(pd.Series)
#print(length_more_limit)
#print(df_metadata_expanded)
# Concatenate the original DataFrame with the expanded metadata DataFrame
results_df_out = pd.concat([length_more_limit.drop('metadatas', axis=1), df_metadata_expanded], axis=1)
results_df_out = results_df_out.rename(columns={"documents":orig_df_col})
results_df_out = results_df_out.drop(["page_section", "row", "source", "id"], axis=1, errors="ignore")
results_df_out['distances'] = round(results_df_out['distances'].astype(float), 3)
# Join back to original df
# results_df_out = orig_df.merge(length_more_limit[['ids', 'distances']], left_index = True, right_on = "ids", how="inner").sort_values("distances")
# Join on additional files
if in_join_file:
join_filename = in_join_file.name
# Import data
join_df = read_file(join_filename)
join_df[in_join_column] = join_df[in_join_column].astype(str).str.replace("\.0$","", regex=True)
# Duplicates dropped so as not to expand out dataframe
join_df = join_df.drop_duplicates(in_join_column)
results_df_out[search_df_join_column] = results_df_out[search_df_join_column].astype(str).str.replace("\.0$","", regex=True)
results_df_out = results_df_out.merge(join_df,left_on=search_df_join_column, right_on=in_join_column, how="left").drop(in_join_column, axis=1)
return results_df_out
def jina_simple_retrieval(query_str:str, vectorstore, docs, orig_df_col:str, k_val:int, out_passages:int,
vec_score_cut_off:float, vec_weight:float, in_join_file = None, in_join_column = None, search_df_join_column = None, device = torch_device, embeddings = embeddings_model, progress=gr.Progress()): # ,vectorstore, embeddings
# print("vectorstore loaded: ", vectorstore)
# Convert it to a PyTorch tensor and transfer to GPU
vectorstore_tensor = tensor(vectorstore).to(device)
# Load the sentence transformer model and move it to GPU
embeddings = embeddings.to(device)
# Encode the query using the sentence transformer and convert to a PyTorch tensor
query = embeddings.encode(query_str)
query_tensor = tensor(query).to(device)
if query_tensor.dim() == 1:
query_tensor = query_tensor.unsqueeze(0) # Reshape to 2D with one row
# Normalize the query tensor and vectorstore tensor
query_norm = query_tensor / query_tensor.norm(dim=1, keepdim=True)
vectorstore_norm = vectorstore_tensor / vectorstore_tensor.norm(dim=1, keepdim=True)
# Calculate cosine similarities (batch processing)
cosine_similarities = mm(query_norm, vectorstore_norm.T)
# Flatten the tensor to a 1D array
cosine_similarities = cosine_similarities.flatten()
# Convert to a NumPy array if it's still a PyTorch tensor
cosine_similarities = cosine_similarities.cpu().numpy()
# Create a Pandas Series
cosine_similarities_series = pd.Series(cosine_similarities)
# Pull out relevent info from docs
page_contents = [doc.page_content for doc in docs]
page_meta = [doc.metadata for doc in docs]
ids_range = range(0,len(page_contents))
ids = [str(element) for element in ids_range]
df_docs = pd.DataFrame(data={"ids": ids,
"documents": page_contents,
"metadatas":page_meta,
"distances":cosine_similarities_series}).sort_values("distances", ascending=False).iloc[0:k_val,:]
results_df_out = process_data_from_scores_df(df_docs, in_join_file, out_passages, vec_score_cut_off, vec_weight, orig_df_col, in_join_column, search_df_join_column)
# If nothing found, return error message
if results_df_out.empty:
return 'No result found!', None
query_str_file = query_str.replace(" ", "_")
results_df_name = "semantic_search_result_" + today_rev + "_" + query_str_file + ".xlsx"
results_df_out.to_excel(results_df_name, index= None)
results_first_text = results_df_out.iloc[0, 1]
return results_first_text, results_df_name
# Deprecated Chroma functions - kept just in case needed in future.
def docs_to_chroma_save_deprecated(docs_out, embeddings = embeddings_model, progress=gr.Progress()):
'''
Takes a Langchain document class and saves it into a Chroma sqlite file. Not currently used.
'''
print(f"> Total split documents: {len(docs_out)}")
#print(docs_out)
page_contents = [doc.page_content for doc in docs_out]
page_meta = [doc.metadata for doc in docs_out]
ids_range = range(0,len(page_contents))
ids = [str(element) for element in ids_range]
tic = time.perf_counter()
#embeddings_list = []
#for page in progress.tqdm(page_contents, desc = "Preparing search index", unit = "rows"):
# embeddings_list.append(embeddings.encode(sentences=page, max_length=1024).tolist())
embeddings_list = embeddings.encode(sentences=page_contents, max_length=256, show_progress_bar = True, batch_size = 32).tolist() # For Jina embeddings
#embeddings_list = embeddings.encode(sentences=page_contents, normalize_embeddings=True).tolist() # For BGE embeddings
#embeddings_list = embeddings.encode(sentences=page_contents).tolist() # For minilm
toc = time.perf_counter()
time_out = f"The embedding took {toc - tic:0.1f} seconds"
#pd.Series(embeddings_list).to_csv("embeddings_out.csv")
# Jina tiny
# This takes about 300 seconds for 240,000 records = 800 / second, 1024 max length
# For 50k records:
# 61 seconds at 1024 max length
# 55 seconds at 512 max length
# 43 seconds at 256 max length
# 31 seconds at 128 max length
# The embedding took 1372.5 seconds at 256 max length for 655,020 case notes
# BGE small
# 96 seconds for 50k records at 512 length
# all-MiniLM-L6-v2
# 42.5 seconds at (256?) max length
# paraphrase-MiniLM-L3-v2
# 22 seconds for 128 max length
print(time_out)
chroma_tic = time.perf_counter()
# Create a new Chroma collection to store the documents and metadata. We don't need to specify an embedding fuction, and the default will be used.
client = chromadb.PersistentClient(path="./last_year", settings=Settings(
anonymized_telemetry=False))
try:
print("Deleting existing collection.")
#collection = client.get_collection(name="my_collection")
client.delete_collection(name="my_collection")
print("Creating new collection.")
collection = client.create_collection(name="my_collection")
except:
print("Creating new collection.")
collection = client.create_collection(name="my_collection")
# Match batch size is about 40,000, so add that amount in a loop
def create_batch_ranges(in_list, batch_size=40000):
total_rows = len(in_list)
ranges = []
for start in range(0, total_rows, batch_size):
end = min(start + batch_size, total_rows)
ranges.append(range(start, end))
return ranges
batch_ranges = create_batch_ranges(embeddings_list)
print(batch_ranges)
for row_range in progress.tqdm(batch_ranges, desc = "Creating vector database", unit = "batches of 40,000 rows"):
collection.add(
documents = page_contents[row_range[0]:row_range[-1]],
embeddings = embeddings_list[row_range[0]:row_range[-1]],
metadatas = page_meta[row_range[0]:row_range[-1]],
ids = ids[row_range[0]:row_range[-1]])
#print("Here")
# print(collection.count())
#chatf.vectorstore = vectorstore_func
chroma_toc = time.perf_counter()
chroma_time_out = f"Loading to Chroma db took {chroma_toc - chroma_tic:0.1f} seconds"
print(chroma_time_out)
out_message = "Document processing complete"
return out_message, collection
def chroma_retrieval_deprecated(query_str:str, vectorstore, docs, orig_df_col:str, k_val:int, out_passages:int,
vec_score_cut_off:float, vec_weight:float, in_join_file = None, in_join_column = None, search_df_join_column = None, embeddings = embeddings_model): # ,vectorstore, embeddings
query = embeddings.encode(query_str).tolist()
docs = vectorstore.query(
query_embeddings=query,
n_results= k_val # No practical limit on number of responses returned
#where={"metadata_field": "is_equal_to_this"},
#where_document={"$contains":"search_string"}
)
df_docs = pd.DataFrame(data={'ids': docs['ids'][0],
'documents': docs['documents'][0],
'metadatas':docs['metadatas'][0],
'distances':docs['distances'][0]#,
#'embeddings': docs['embeddings']
})
results_df_out = process_data_from_scores_df(df_docs, in_join_file, out_passages, vec_score_cut_off, vec_weight, orig_df_col, in_join_column, search_df_join_column)
results_df_name = "semantic_search_result.csv"
results_df_out.to_csv(results_df_name, index= None)
results_first_text = results_df_out[orig_df_col].iloc[0]
return results_first_text, results_df_name
|