File size: 5,565 Bytes
a9c2120 8466e45 a9c2120 99d6fba 8466e45 ceb8617 352c02a ceb8617 ea0dd40 352c02a ea0dd40 ceb8617 ea0dd40 a9c2120 8466e45 352c02a ceb8617 352c02a ceb8617 a9c2120 ea0dd40 a9c2120 99d6fba a9c2120 99d6fba a9c2120 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
# ## Some functions to clean text
import re
import string
# Add calendar months onto stop words
import calendar
from typing import List
# Adding custom words to the stopwords
custom_words = []
my_stop_words = custom_words
cal_month = (list(calendar.month_name))
cal_month = [x.lower() for x in cal_month]
# Remove blanks
cal_month = [i for i in cal_month if i]
#print(cal_month)
custom_words.extend(cal_month)
# #### Some of my cleaning functions
replace_backslash = r'\\'
email_start_pattern_regex = r'.*importance:|.*subject:'
email_end_pattern_regex = r'kind regards.*|many thanks.*|sincerely.*'
html_pattern_regex = r'<.*?>|&([a-z0-9]+|#[0-9]{1,6}|#x[0-9a-f]{1,6});|\xa0| '
email_pattern_regex = r'\S*@\S*\s?'
num_pattern_regex = r'[0-9]+'
postcode_pattern_regex = r'(\b(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]? ?[0-9][A-Z]{2})|((GIR ?0A{2})\b$)|(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]? ?[0-9]{1}?)$)|(\b(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]?)\b$)'
warning_pattern_regex = r'caution: this email originated from outside of the organization. do not click links or open attachments unless you recognize the sender and know the content is safe.'
nbsp_pattern_regex = r' '
multiple_spaces_regex = r'\s{2,}'
def initial_clean(texts:List[str]):
"""
This function cleans a list of text strings by performing various replacements using polars.
Args:
texts (List[str]): A list of strings to clean.
Returns:
List[str]: A list of cleaned strings.
"""
import polars as pl
texts = pl.Series(texts)
text = texts.str.replace_all(replace_backslash, '/')
text = text.str.replace_all(html_pattern_regex, '')
text = text.str.replace_all(email_start_pattern_regex, '')
text = text.str.replace_all(email_end_pattern_regex, '')
text = text.str.replace_all(email_pattern_regex, '')
text = text.str.replace_all(multiple_spaces_regex, ' ')
text = text.to_list()
return text
def initial_clean_pandas(texts: List[str]):
"""
This function cleans a list of text strings by performing various replacements using pandas.
Args:
texts (List[str]): A list of strings to clean.
Returns:
List[str]: A list of cleaned strings.
"""
import pandas as pd
# Create a pandas Series from the text list for easier manipulation
text_series = pd.Series(texts)
# Replace patterns with pandas string methods (`.str.replace`)
text_series = text_series.astype(str).str.replace(replace_backslash, '/', regex=True)
text_series = text_series.astype(str).str.replace(html_pattern_regex, '', regex=True)
text_series = text_series.astype(str).str.replace(email_start_pattern_regex, '', regex=True)
text_series = text_series.astype(str).str.replace(email_end_pattern_regex, '', regex=True)
text_series = text_series.astype(str).str.replace(email_pattern_regex, '', regex=True)
text_series = text_series.astype(str).str.replace(multiple_spaces_regex, ' ', regex=True)
# Convert cleaned Series back to a list
return text_series.tolist()
def remove_hyphens(text_text):
return re.sub(r'(\w+)-(\w+)-?(\w)?', r'\1 \2 \3', text_text)
def remove_characters_after_tokenization(tokens):
pattern = re.compile('[{}]'.format(re.escape(string.punctuation)))
filtered_tokens = filter(None, [pattern.sub('', token) for token in tokens])
return filtered_tokens
def convert_to_lowercase(tokens):
return [token.lower() for token in tokens if token.isalpha()]
def remove_short_tokens(tokens):
return [token for token in tokens if len(token) > 3]
def remove_dups_text(data_samples_ready, data_samples_clean, data_samples):
# Identify duplicates in the data: https://stackoverflow.com/questions/44191465/efficiently-identify-duplicates-in-large-list-500-000
# Only identifies the second duplicate
seen = set()
dups = []
for i, doi in enumerate(data_samples_ready):
if doi not in seen:
seen.add(doi)
else:
dups.append(i)
#data_samples_ready[dupes[0:]]
# To see a specific duplicated value you know the position of
#matching = [s for s in data_samples_ready if data_samples_ready[83] in s]
#matching
# Remove duplicates only (keep first instance)
#data_samples_ready = list( dict.fromkeys(data_samples_ready) ) # This way would keep one version of the duplicates
### Remove all duplicates including original instance
# Identify ALL duplicates including initial values
# https://stackoverflow.com/questions/11236006/identify-duplicate-values-in-a-list-in-python
from collections import defaultdict
D = defaultdict(list)
for i,item in enumerate(data_samples_ready):
D[item].append(i)
D = {k:v for k,v in D.items() if len(v)>1}
# https://stackoverflow.com/questions/952914/how-to-make-a-flat-list-out-of-a-list-of-lists
L = list(D.values())
flat_list_dups = [item for sublist in L for item in sublist]
# https://stackoverflow.com/questions/11303225/how-to-remove-multiple-indexes-from-a-list-at-the-same-time
for index in sorted(flat_list_dups, reverse=True):
del data_samples_ready[index]
del data_samples_clean[index]
del data_samples[index]
# Remove blanks
data_samples_ready = [i for i in data_samples_ready if i]
data_samples_clean = [i for i in data_samples_clean if i]
data_samples = [i for i in data_samples if i]
return data_samples_ready, data_samples_clean, flat_list_dups, data_samples
|