File size: 14,524 Bytes
2cb9977 78d71d4 2cb9977 78d71d4 ceb8617 78d71d4 2cb9977 ceb8617 78d71d4 2cb9977 78d71d4 2cb9977 78d71d4 ceb8617 78d71d4 ceb8617 78d71d4 ceb8617 78d71d4 ceb8617 78d71d4 ceb8617 78d71d4 2cb9977 ceb8617 2cb9977 78d71d4 ceb8617 78d71d4 2cb9977 ceb8617 2cb9977 ceb8617 2cb9977 78d71d4 ceb8617 78d71d4 ceb8617 78d71d4 ceb8617 78d71d4 ceb8617 78d71d4 ceb8617 78d71d4 ceb8617 78d71d4 ceb8617 2cb9977 ceb8617 2cb9977 78d71d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
# Install/ import stuff we need
import os
import time
import re
import ast
import pandas as pd
import gradio as gr
from typing import Type, List, Literal
from langchain.text_splitter import RecursiveCharacterTextSplitter
from pydantic import BaseModel, Field
# Creating an alias for pandas DataFrame using Type
PandasDataFrame = Type[pd.DataFrame]
# class Document(BaseModel):
# """Class for storing a piece of text and associated metadata. Implementation adapted from Langchain code: https://github.com/langchain-ai/langchain/blob/master/libs/core/langchain_core/documents/base.py"""
# page_content: str
# """String text."""
# metadata: dict = Field(default_factory=dict)
# """Arbitrary metadata about the page content (e.g., source, relationships to other
# documents, etc.).
# """
# type: Literal["Document"] = "Document"
class Document(BaseModel):
"""Class for storing a piece of text and associated metadata. Implementation adapted from Langchain code: https://github.com/langchain-ai/langchain/blob/master/libs/core/langchain_core/documents/base.py"""
page_content: str
"""String text."""
metadata: dict = Field(default_factory=dict)
"""Arbitrary metadata about the page content (e.g., source, relationships to other
documents, etc.).
"""
type: Literal["Document"] = "Document"
split_strat = ["\n\n", "\n", ". ", "! ", "? "]
chunk_size = 500
chunk_overlap = 0
start_index = True
## Parse files
def determine_file_type(file_path):
"""
Determine the file type based on its extension.
Parameters:
file_path (str): Path to the file.
Returns:
str: File extension (e.g., '.pdf', '.docx', '.txt', '.html').
"""
return os.path.splitext(file_path)[1].lower()
def parse_file(file_paths, text_column='text'):
"""
Accepts a list of file paths, determines each file's type based on its extension,
and passes it to the relevant parsing function.
Parameters:
file_paths (list): List of file paths.
text_column (str): Name of the column in CSV/Excel files that contains the text content.
Returns:
dict: A dictionary with file paths as keys and their parsed content (or error message) as values.
"""
if not isinstance(file_paths, list):
raise ValueError("Expected a list of file paths.")
extension_to_parser = {
# '.pdf': parse_pdf,
# '.docx': parse_docx,
# '.txt': parse_txt,
# '.html': parse_html,
# '.htm': parse_html, # Considering both .html and .htm for HTML files
'.csv': lambda file_path: parse_csv_or_excel(file_path, text_column),
'.xlsx': lambda file_path: parse_csv_or_excel(file_path, text_column),
'.parquet': lambda file_path: parse_csv_or_excel(file_path, text_column)
}
parsed_contents = {}
file_names = []
for file_path in file_paths:
print(file_path.name)
#file = open(file_path.name, 'r')
#print(file)
file_extension = determine_file_type(file_path.name)
if file_extension in extension_to_parser:
parsed_contents[file_path.name] = extension_to_parser[file_extension](file_path.name)
else:
parsed_contents[file_path.name] = f"Unsupported file type: {file_extension}"
filename_end = get_file_path_end(file_path.name)
file_names.append(filename_end)
return parsed_contents, file_names
def text_regex_clean(text):
# Merge hyphenated words
text = re.sub(r"(\w+)-\n(\w+)", r"\1\2", text)
# If a double newline ends in a letter, add a full stop.
text = re.sub(r'(?<=[a-zA-Z])\n\n', '.\n\n', text)
# Fix newlines in the middle of sentences
text = re.sub(r"(?<!\n\s)\n(?!\s\n)", " ", text.strip())
# Remove multiple newlines
text = re.sub(r"\n\s*\n", "\n\n", text)
text = re.sub(r" ", " ", text)
# Add full stops and new lines between words with no space between where the second one has a capital letter
text = re.sub(r'(?<=[a-z])(?=[A-Z])', '. \n\n', text)
return text
def parse_csv_or_excel(file_path, text_column = "text"):
"""
Read in a CSV or Excel file.
Parameters:
file_path (str): Path to the CSV file.
text_column (str): Name of the column in the CSV file that contains the text content.
Returns:
Pandas DataFrame: Dataframe output from file read
"""
#out_df = pd.DataFrame()
file_list = [string.name for string in file_path]
print(file_list)
data_file_names = [string for string in file_list if "tokenised" not in string]
#for file_path in file_paths:
file_extension = determine_file_type(data_file_names[0])
file_name = get_file_path_end(data_file_names[0])
file_names = [file_name]
print(file_extension)
if file_extension == ".csv":
df = pd.read_csv(data_file_names[0], low_memory=False)
if text_column not in df.columns: return pd.DataFrame(), ['Please choose a valid column name']
df['source'] = file_name
df['page_section'] = ""
elif file_extension == ".xlsx":
df = pd.read_excel(data_file_names[0], engine='openpyxl')
if text_column not in df.columns: return pd.DataFrame(), ['Please choose a valid column name']
df['source'] = file_name
df['page_section'] = ""
elif file_extension == ".parquet":
df = pd.read_parquet(data_file_names[0])
if text_column not in df.columns: return pd.DataFrame(), ['Please choose a valid column name']
df['source'] = file_name
df['page_section'] = ""
else:
print(f"Unsupported file type: {file_extension}")
return pd.DataFrame(), ['Please choose a valid file type']
message = "Loaded in file. Now converting to document format."
print(message)
return df, file_names, message
def get_file_path_end(file_path):
match = re.search(r'(.*[\/\\])?(.+)$', file_path)
filename_end = match.group(2) if match else ''
return filename_end
# +
# Convert parsed text to docs
# -
def text_to_docs(text_dict: dict, chunk_size: int = chunk_size) -> List[Document]:
"""
Converts the output of parse_file (a dictionary of file paths to content)
to a list of Documents with metadata.
"""
doc_sections = []
parent_doc_sections = []
for file_path, content in text_dict.items():
ext = os.path.splitext(file_path)[1].lower()
# Depending on the file extension, handle the content
# if ext == '.pdf':
# docs, page_docs = pdf_text_to_docs(content, chunk_size)
# elif ext in ['.html', '.htm', '.txt', '.docx']:
# docs = html_text_to_docs(content, chunk_size)
if ext in ['.csv', '.xlsx']:
docs, page_docs = csv_excel_text_to_docs(content, chunk_size)
else:
print(f"Unsupported file type {ext} for {file_path}. Skipping.")
continue
filename_end = get_file_path_end(file_path)
#match = re.search(r'(.*[\/\\])?(.+)$', file_path)
#filename_end = match.group(2) if match else ''
# Add filename as metadata
for doc in docs: doc.metadata["source"] = filename_end
#for parent_doc in parent_docs: parent_doc.metadata["source"] = filename_end
doc_sections.extend(docs)
#parent_doc_sections.extend(parent_docs)
return doc_sections#, page_docs
def write_out_metadata_as_string(metadata_in):
# If metadata_in is a single dictionary, wrap it in a list
if isinstance(metadata_in, dict):
metadata_in = [metadata_in]
metadata_string = [f"{' '.join(f'{k}: {v}' for k, v in d.items() if k != 'page_section')}" for d in metadata_in] # ['metadata']
return metadata_string
def combine_metadata_columns(df, cols):
df['metadatas'] = "{"
df['blank_column'] = ""
for n, col in enumerate(cols):
df[col] = df[col].astype(str).str.replace('"',"'").str.replace('\n', ' ').str.replace('\r', ' ').str.replace('\r\n', ' ').str.cat(df['blank_column'].astype(str), sep="")
df['metadatas'] = df['metadatas'] + '"' + cols[n] + '": "' + df[col] + '", '
df['metadatas'] = (df['metadatas'] + "}").str.replace(', }', '}')
return df['metadatas']
def csv_excel_text_to_docs(df, text_column='text', chunk_size=None) -> List[Document]:
"""Converts a DataFrame's content to a list of Documents with metadata."""
#print(df.head())
print("Converting to documents.")
doc_sections = []
df[text_column] = df[text_column].astype(str) # Ensure column is a string column
# For each row in the dataframe
for idx, row in df.iterrows():
# Extract the text content for the document
doc_content = row[text_column]
# Generate metadata containing other columns' data
metadata = {"row": idx + 1}
for col, value in row.items():
if col != text_column:
metadata[col] = value
metadata_string = write_out_metadata_as_string(metadata)[0]
# If chunk_size is provided, split the text into chunks
if chunk_size:
# Assuming you have a text splitter function similar to the PDF handling
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
split_strat=split_strat,
start_index=start_index
) #Other arguments as required by the splitter
sections = text_splitter.split_text(doc_content)
# For each section, create a Document object
for i, section in enumerate(sections):
section = '. '.join([metadata_string, section])
doc = Document(page_content=section,
metadata={**metadata, "section": i, "row_section": f"{metadata['row']}-{i}"})
doc_sections.append(doc)
#print("Chunking currently disabled")
else:
# If no chunk_size is provided, create a single Document object for the row
#doc_content = '. '.join([metadata_string, doc_content])
doc = Document(page_content=doc_content, metadata=metadata)
doc_sections.append(doc)
message = "Data converted to document format. Now creating/loading document embeddings."
print(message)
return doc_sections, message
def clean_line_breaks(text):
# Replace \n and \r\n with a space
return text.replace('\n', ' ').replace('\r', ' ').replace('\r\n', ' ')
def parse_metadata(row):
try:
# Ensure the 'title' field is a string and clean line breaks
#if 'TITLE' in row:
# row['TITLE'] = clean_line_breaks(row['TITLE'])
# Convert the row to a string if it's not already
row_str = str(row) if not isinstance(row, str) else row
row_str.replace('\n', ' ').replace('\r', ' ').replace('\r\n', ' ')
# Parse the string
metadata = ast.literal_eval(row_str)
# Process metadata
return metadata
except SyntaxError as e:
print(f"Failed to parse metadata: {row_str}")
print(f"Error: {e}")
# Handle the error or log it
return None # or some default value
def csv_excel_text_to_docs(df, text_column='text', chunk_size=None, progress=gr.Progress()) -> List[Document]:
"""Converts a DataFrame's content to a list of dictionaries in the 'Document' format, containing page_content and associated metadata."""
ingest_tic = time.perf_counter()
doc_sections = []
df[text_column] = df[text_column].astype(str).str.strip() # Ensure column is a string column
cols = [col for col in df.columns if col != text_column]
df["metadata"] = combine_metadata_columns(df, cols)
df = df.rename(columns={text_column:"page_content"})
#print(df[["page_content", "metadata"]].to_dict(orient='records'))
#doc_sections = df[["page_content", "metadata"]].to_dict(orient='records')
#doc_sections = [Document(**row) for row in df[["page_content", "metadata"]].to_dict(orient='records')]
# Create a list of Document objects
doc_sections = [Document(page_content=row['page_content'],
metadata= parse_metadata(row["metadata"]))
for index, row in progress.tqdm(df.iterrows(), desc = "Splitting up text", unit = "rows")]
ingest_toc = time.perf_counter()
ingest_time_out = f"Preparing documents took {ingest_toc - ingest_tic:0.1f} seconds"
print(ingest_time_out)
return doc_sections, "Finished splitting documents"
# # Functions for working with documents after loading them back in
def pull_out_data(series):
# define a lambda function to convert each string into a tuple
to_tuple = lambda x: eval(x)
# apply the lambda function to each element of the series
series_tup = series.apply(to_tuple)
series_tup_content = list(zip(*series_tup))[1]
series = pd.Series(list(series_tup_content))#.str.replace("^Main post content", "", regex=True).str.strip()
return series
def docs_from_csv(df):
import ast
documents = []
page_content = pull_out_data(df["0"])
metadatas = pull_out_data(df["1"])
for x in range(0,len(df)):
new_doc = Document(page_content=page_content[x], metadata=metadatas[x])
documents.append(new_doc)
return documents
def docs_from_lists(docs, metadatas):
documents = []
for x, doc in enumerate(docs):
new_doc = Document(page_content=doc, metadata=metadatas[x])
documents.append(new_doc)
return documents
def docs_elements_from_csv_save(docs_path="documents.csv"):
documents = pd.read_csv(docs_path)
docs_out = docs_from_csv(documents)
out_df = pd.DataFrame(docs_out)
docs_content = pull_out_data(out_df[0].astype(str))
docs_meta = pull_out_data(out_df[1].astype(str))
doc_sources = [d['source'] for d in docs_meta]
return out_df, docs_content, docs_meta, doc_sources
|