File size: 12,717 Bytes
2bcd818 99d6fba 2bcd818 99d6fba 739b386 99d6fba 2bcd818 99d6fba 63049fe 99d6fba 4ee3470 63049fe 4ee3470 63049fe 99d6fba 739b386 63049fe 4ee3470 63049fe 4ee3470 63049fe 99d6fba 200480d 99d6fba 4ee3470 99d6fba 2bcd818 99d6fba 63049fe 99d6fba 3df8e40 99d6fba 2bcd818 99d6fba 2bcd818 4ee3470 99d6fba 2bcd818 99d6fba 2bcd818 99d6fba 2bcd818 99d6fba 63049fe 99d6fba 2bcd818 99d6fba 63049fe 99d6fba 200480d 99d6fba 4ee3470 99d6fba 4ee3470 99d6fba 4ee3470 99d6fba 4ee3470 99d6fba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
# Install/ import packages
import time
import re
import ast
import gzip
import pandas as pd
import gradio as gr
import pickle
from typing import Type, List, Literal
#from langchain.text_splitter import RecursiveCharacterTextSplitter
from pydantic import BaseModel, Field
# Creating an alias for pandas DataFrame using Type
PandasDataFrame = Type[pd.DataFrame]
class Document(BaseModel):
"""Class for storing a piece of text and associated metadata. Implementation adapted from Langchain code: https://github.com/langchain-ai/langchain/blob/master/libs/core/langchain_core/documents/base.py"""
page_content: str
"""String text."""
metadata: dict = Field(default_factory=dict)
"""Arbitrary metadata about the page content (e.g., source, relationships to other
documents, etc.).
"""
type: Literal["Document"] = "Document"
# Constants for chunking - not currently used
split_strat = ["\n\n", "\n", ". ", "! ", "? "]
chunk_size = 512
chunk_overlap = 0
start_index = True
from search_funcs.helper_functions import get_file_path_end_with_ext, detect_file_type, get_file_path_end
from search_funcs.bm25_functions import save_prepared_bm25_data
from search_funcs.clean_funcs import initial_clean
def parse_file_not_used(file_paths, text_column='text'):
"""
Accepts a list of file paths, determines each file's type based on its extension,
and passes it to the relevant parsing function.
Parameters:
file_paths (list): List of file paths.
text_column (str): Name of the column in CSV/Excel files that contains the text content.
Returns:
dict: A dictionary with file paths as keys and their parsed content (or error message) as values.
"""
if not isinstance(file_paths, list):
raise ValueError("Expected a list of file paths.")
extension_to_parser = {
# '.pdf': parse_pdf,
# '.docx': parse_docx,
# '.txt': parse_txt,
# '.html': parse_html,
# '.htm': parse_html, # Considering both .html and .htm for HTML files
'.csv': lambda file_path: parse_csv_or_excel(file_path, text_column),
'.xlsx': lambda file_path: parse_csv_or_excel(file_path, text_column),
'.parquet': lambda file_path: parse_csv_or_excel(file_path, text_column)
}
parsed_contents = {}
file_names = []
for file_path in file_paths:
#print(file_path.name)
#file = open(file_path.name, 'r')
#print(file)
file_extension = detect_file_type(file_path.name)
if file_extension in extension_to_parser:
parsed_contents[file_path.name] = extension_to_parser[file_extension](file_path.name)
else:
parsed_contents[file_path.name] = f"Unsupported file type: {file_extension}"
filename_end = get_file_path_end_with_ext(file_path.name)
file_names.append(filename_end)
return parsed_contents, file_names
def text_regex_clean(text):
# Merge hyphenated words
text = re.sub(r"(\w+)-\n(\w+)", r"\1\2", text)
# If a double newline ends in a letter, add a full stop.
text = re.sub(r'(?<=[a-zA-Z])\n\n', '.\n\n', text)
# Fix newlines in the middle of sentences
text = re.sub(r"(?<!\n\s)\n(?!\s\n)", " ", text.strip())
# Remove multiple newlines
text = re.sub(r"\n\s*\n", "\n\n", text)
text = re.sub(r" ", " ", text)
# Add full stops and new lines between words with no space between where the second one has a capital letter
text = re.sub(r'(?<=[a-z])(?=[A-Z])', '. \n\n', text)
return text
def parse_csv_or_excel(file_path, data_state, text_column = "text"):
"""
Read in a CSV or Excel file.
Parameters:
file_path (str): Path to the CSV file.
text_column (str): Name of the column in the CSV file that contains the text content.
Returns:
Pandas DataFrame: Dataframe output from file read
"""
file_list = [string.name for string in file_path]
#print(file_list)
data_file_names = [string for string in file_list if "tokenised" not in string.lower() and "npz" not in string.lower()]# and "gz" not in string.lower()]
data_file_name = data_file_names[0]
#for file_path in file_paths:
file_name = get_file_path_end_with_ext(data_file_name)
message = "Loaded in file. Now converting to document format."
print(message)
return data_state, file_name, message
def write_out_metadata_as_string(metadata_in):
# If metadata_in is a single dictionary, wrap it in a list
if isinstance(metadata_in, dict):
metadata_in = [metadata_in]
metadata_string = [f"{' '.join(f'{k}: {v}' for k, v in d.items() if k != 'page_section')}" for d in metadata_in] # ['metadata']
return metadata_string
def combine_metadata_columns(df, cols):
df['metadata'] = '{'
df['blank_column'] = ''
for n, col in enumerate(cols):
df[col] = df[col].astype(str).str.replace('"',"'").str.replace('\n', ' ').str.replace('\r', ' ').str.replace('\r\n', ' ').str.cat(df['blank_column'].astype(str), sep="")
df['metadata'] = df['metadata'] + '"' + cols[n] + '": "' + df[col] + '", '
df['metadata'] = (df['metadata'] + "}").str.replace(', }', '}').str.replace('", }"', '}')
return df['metadata']
def split_string_into_chunks(input_string, max_length, split_symbols):
# Check if input_string or split_symbols are empty
if not input_string or not split_symbols:
return [input_string]
chunks = []
current_chunk = ""
for char in input_string:
current_chunk += char
if len(current_chunk) >= max_length or char in split_symbols:
# Add the current chunk to the chunks list
chunks.append(current_chunk)
current_chunk = ""
# Adding any remaining part of the string
if current_chunk:
chunks.append(current_chunk)
return chunks
def clean_line_breaks(text):
# Replace \n and \r\n with a space
return text.replace('\n', ' ').replace('\r', ' ').replace('\r\n', ' ')
def parse_metadata(row):
try:
# Ensure the 'title' field is a string and clean line breaks
#if 'TITLE' in row:
# row['TITLE'] = clean_line_breaks(row['TITLE'])
# Convert the row to a string if it's not already
row_str = str(row) if not isinstance(row, str) else row
row_str.replace('\n', ' ').replace('\r', ' ').replace('\r\n', ' ')
# Parse the string
metadata = ast.literal_eval(row_str)
# Process metadata
return metadata
except SyntaxError as e:
print(f"Failed to parse metadata: {row_str}")
print(f"Error: {e}")
# Handle the error or log it
return None # or some default value
def csv_excel_text_to_docs(df, in_file, text_column, clean = "No", return_intermediate_files = "No", chunk_size=None, progress=gr.Progress(track_tqdm=True)) -> List[Document]:
"""Converts a DataFrame's content to a list of dictionaries in the 'Document' format, containing page_content and associated metadata."""
output_list = []
if not in_file:
return None, "Please load in at least one file.", output_list
progress(0, desc = "Loading in data")
file_list = [string.name for string in in_file]
data_file_names = [string for string in file_list if "tokenised" not in string and "npz" not in string.lower()]
if not data_file_names:
return doc_sections, "Please load in at least one csv/Excel/parquet data file.", output_list
if not text_column:
return None, "Please enter a column name to search"
data_file_name = data_file_names[0]
# Check if file is a document format, and explode out as needed
if "prepared_docs" in data_file_name:
print("Loading in documents from file.")
#print(df[0:5])
#section_series = df.iloc[:,0]
#section_series = "{" + section_series + "}"
doc_sections = df
#print(doc_sections[0])
# Convert each element in the Series to a Document instance
#doc_sections = section_series.apply(lambda x: Document(**x))
return doc_sections, "Finished preparing documents", output_list
# df = document_to_dataframe(df.iloc[:,0])
ingest_tic = time.perf_counter()
doc_sections = []
df[text_column] = df[text_column].astype(str).str.strip() # Ensure column is a string column
original_text_column = text_column
if clean == "Yes":
progress(0.1, desc = "Cleaning data")
clean_tic = time.perf_counter()
print("Starting data clean.")
#df = df.drop_duplicates(text_column)
df_list = list(df[text_column])
df_list = initial_clean(df_list)
# Get rid of old data and keep only the new
#df = df.drop(text_column, axis = 1)
# Save to file if you have cleaned the data. Text column has now been renamed with '_cleaned' at the send
out_file_name, text_column, df = save_prepared_bm25_data(data_file_name, df_list, df, text_column)
df[text_column] = df_list
clean_toc = time.perf_counter()
clean_time_out = f"Cleaning the text took {clean_toc - clean_tic:0.1f} seconds."
print(clean_time_out)
cols = [col for col in df.columns if col != original_text_column]
df["metadata"] = combine_metadata_columns(df, cols)
#df = df.rename(columns={text_column:"page_content"})
#print(df[["page_content", "metadata"]].to_dict(orient='records'))
#doc_sections = df[["page_content", "metadata"]].to_dict(orient='records')
#doc_sections = [Document(**row) for row in df[["page_content", "metadata"]].to_dict(orient='records')]
progress(0.3, desc = "Converting data to document format")
# Create a list of Document objects
doc_sections = [Document(page_content=row[text_column],
metadata= parse_metadata(row["metadata"]))
for index, row in progress.tqdm(df.iterrows(), desc = "Splitting up text", unit = "rows")]
ingest_toc = time.perf_counter()
ingest_time_out = f"Preparing documents took {ingest_toc - ingest_tic:0.1f} seconds"
print(ingest_time_out)
if return_intermediate_files == "Yes":
progress(0.5, desc = "Saving prepared documents")
data_file_out_name_no_ext = get_file_path_end(data_file_name)
file_name = data_file_out_name_no_ext
#print(doc_sections)
#page_content_series_string = pd.Series(doc_sections).astype(str)
#page_content_series_string = page_content_series_string.str.replace(" type='Document'", "").str.replace("' metadata=", "', 'metadata':").str.replace("page_content=", "{'page_content':")
#page_content_series_string = page_content_series_string + "}"
#print(page_content_series_string[0])
#metadata_series_string = pd.Series(doc_sections[1]).astype(str)
if clean == "No":
#pd.DataFrame(data = {"Documents":page_content_series_string}).to_parquet(file_name + "_prepared_docs.parquet")
out_doc_file_name = file_name + "_prepared_docs.pkl.gz"
with gzip.open(out_doc_file_name, 'wb') as file:
pickle.dump(doc_sections, file)
#pd.Series(doc_sections).to_pickle(file_name + "_prepared_docs.pkl")
elif clean == "Yes":
#pd.DataFrame(data = {"Documents":page_content_series_string}).to_parquet(file_name + "_prepared_docs_clean.parquet")
out_doc_file_name = file_name + "_cleaned_prepared_docs.pkl.gz"
with gzip.open(out_doc_file_name, 'wb') as file:
pickle.dump(doc_sections, file)
#pd.Series(doc_sections).to_pickle(file_name + "_prepared_docs_clean.pkl")
output_list.append(out_doc_file_name)
print("Documents saved to file.")
return doc_sections, "Finished preparing documents.", output_list
def document_to_dataframe(documents):
'''
Convert an object in document format to pandas dataframe
'''
rows = []
for doc in documents:
# Convert Document to dictionary and extract metadata
doc_dict = doc.dict()
metadata = doc_dict.pop('metadata')
# Add the page_content and type to the metadata
metadata['page_content'] = doc_dict['page_content']
metadata['type'] = doc_dict['type']
# Add to the list of rows
rows.append(metadata)
# Create a DataFrame from the list of rows
df = pd.DataFrame(rows)
return df
|