File size: 25,065 Bytes
99d6fba 2bcd818 99d6fba 2089141 99d6fba 2bcd818 99d6fba 2bcd818 99d6fba 2bcd818 99d6fba 2bcd818 3034296 99d6fba 4ee3470 99d6fba 2089141 99d6fba 2089141 63049fe 4ee3470 63049fe 2bcd818 99d6fba 3df8e40 99d6fba 739b386 99d6fba 63049fe 99d6fba 63049fe 99d6fba 2bcd818 99d6fba 352c02a 63049fe 99d6fba 2bcd818 99d6fba 2bcd818 99d6fba 4ee3470 99d6fba 4ee3470 63049fe 99d6fba 4ee3470 99d6fba 63049fe 99d6fba 352c02a 99d6fba 63049fe 99d6fba 4ce2224 99d6fba 2bcd818 2089141 2bcd818 8466e45 2bcd818 352c02a 2bcd818 352c02a 63049fe 99d6fba 63049fe 99d6fba 200480d 99d6fba 63049fe 99d6fba 200480d 99d6fba 3df8e40 63049fe 3df8e40 99d6fba 63049fe 99d6fba 63049fe 99d6fba 352c02a 99d6fba 200480d 99d6fba 200480d 99d6fba 8466e45 99d6fba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 |
import os
import time
import pandas as pd
from typing import Type
import gradio as gr
import numpy as np
from datetime import datetime
#from transformers import AutoModel, AutoTokenizer
from search_funcs.helper_functions import get_file_path_end
#import torch
from torch import cuda, backends#, tensor, mm, utils
from sentence_transformers import SentenceTransformer
today_rev = datetime.now().strftime("%Y%m%d")
# Check for torch cuda
print("Is CUDA enabled? ", cuda.is_available())
print("Is a CUDA device available on this computer?", backends.cudnn.enabled)
if cuda.is_available():
torch_device = "cuda"
os.system("nvidia-smi")
else:
torch_device = "cpu"
print("Device used is: ", torch_device)
from search_funcs.helper_functions import create_highlighted_excel_wb, ensure_output_folder_exists
PandasDataFrame = Type[pd.DataFrame]
# Load embeddings - Jina - deprecated
# Pinning a Jina revision for security purposes: https://www.baseten.co/blog/pinning-ml-model-revisions-for-compatibility-and-security/
# Save Jina model locally as described here: https://huggingface.co/jinaai/jina-embeddings-v2-base-en/discussions/29
# embeddings_name = "jinaai/jina-embeddings-v2-small-en"
# local_embeddings_location = "model/jina/"
# revision_choice = "b811f03af3d4d7ea72a7c25c802b21fc675a5d99"
# try:
# embeddings_model = AutoModel.from_pretrained(local_embeddings_location, revision = revision_choice, trust_remote_code=True,local_files_only=True, device_map="auto")
# except:
# embeddings_model = AutoModel.from_pretrained(embeddings_name, revision = revision_choice, trust_remote_code=True, device_map="auto")
# Load embeddings
embeddings_name = "BAAI/bge-small-en-v1.5"
# Define a list of possible local locations to search for the model
local_embeddings_locations = [
"model/bge/", # Potential local location
"/model/bge/", # Potential location in Docker container
"/home/user/app/model/bge/" # This is inside a Docker container
]
# Attempt to load the model from each local location
for location in local_embeddings_locations:
try:
embeddings_model = SentenceTransformer(location)
print(f"Found local model installation at: {location}")
break # Exit the loop if the model is found
except Exception as e:
print(f"Failed to load model from {location}: {e}")
continue
else:
# If the loop completes without finding the model in any local location
embeddings_model = SentenceTransformer(embeddings_name)
print("Could not find local model installation. Downloading from Huggingface")
def docs_to_bge_embed_np_array(docs_out, in_file, embeddings_state, output_file_state, clean, return_intermediate_files = "No", embeddings_super_compress = "No", embeddings_model = embeddings_model, progress=gr.Progress(track_tqdm=True)):
'''
Takes a Langchain document class and saves it into a Numpy array.
'''
ensure_output_folder_exists()
if not in_file:
out_message = "No input file found. Please load in at least one file."
print(out_message)
return out_message, None, None, output_file_state
progress(0.6, desc = "Loading/creating embeddings")
print(f"> Total split documents: {len(docs_out)}")
#print(docs_out)
page_contents = [doc.page_content for doc in docs_out]
## Load in pre-embedded file if exists
file_list = [string.name for string in in_file]
#print(file_list)
embeddings_file_names = [string for string in file_list if "embedding" in string.lower()]
data_file_names = [string for string in file_list if "tokenised" not in string.lower() and "npz" not in string.lower()]# and "gz" not in string.lower()]
data_file_name = data_file_names[0]
data_file_name_no_ext = get_file_path_end(data_file_name)
out_message = "Document processing complete. Ready to search."
# print("embeddings loaded: ", embeddings_out)
if embeddings_state.size == 0:
tic = time.perf_counter()
print("Starting to embed documents.")
#embeddings_list = []
#for page in progress.tqdm(page_contents, desc = "Preparing search index", unit = "rows"):
# embeddings_list.append(embeddings.encode(sentences=page, max_length=1024).tolist())
#embeddings_out = calc_bge_norm_embeddings(page_contents, embeddings_model, tokenizer)
embeddings_out = embeddings_model.encode(sentences=page_contents, show_progress_bar = True, batch_size = 32, normalize_embeddings=True) # For BGE
#embeddings_list = embeddings.encode(sentences=page_contents, normalize_embeddings=True).tolist() # For BGE embeddings
#embeddings_list = embeddings.encode(sentences=page_contents).tolist() # For minilm
toc = time.perf_counter()
time_out = f"The embedding took {toc - tic:0.1f} seconds"
print(time_out)
# If you want to save your files for next time
if return_intermediate_files == "Yes":
if clean == "Yes": data_file_name_no_ext = data_file_name_no_ext + "_cleaned"
else: data_file_name_no_ext = data_file_name_no_ext
progress(0.9, desc = "Saving embeddings to file")
if embeddings_super_compress == "No":
semantic_search_file_name = data_file_name_no_ext + '_bge_embeddings.npz'
np.savez_compressed(semantic_search_file_name, embeddings_out)
else:
semantic_search_file_name = data_file_name_no_ext + '_bge_embedding_compress.npz'
embeddings_out_round = np.round(embeddings_out, 3)
embeddings_out_round *= 100 # Rounding not currently used
np.savez_compressed(semantic_search_file_name, embeddings_out_round)
output_file_state.append(semantic_search_file_name)
return out_message, embeddings_out, output_file_state, output_file_state
return out_message, embeddings_out, output_file_state, output_file_state
else:
# Just return existing embeddings if already exist
embeddings_out = embeddings_state
print(out_message)
return out_message, embeddings_out, output_file_state, output_file_state
def process_data_from_scores_df(df_docs, in_join_file, out_passages, vec_score_cut_off, vec_weight, orig_df_col, in_join_column, search_df_join_column, progress = gr.Progress(track_tqdm=True)):
def create_docs_keep_from_df(df):
dict_out = {'ids' : [df['ids']],
'documents': [df['documents']],
'metadatas': [df['metadatas']],
'distances': [round(df['distances'].astype(float), 4)],
'embeddings': None
}
return dict_out
# Prepare the DataFrame by transposing
#df_docs = df#.apply(lambda x: x.explode()).reset_index(drop=True)
# Keep only documents with a certain score
#print(df_docs)
docs_scores = df_docs["distances"] #.astype(float)
# Only keep sources that are sufficiently relevant (i.e. similarity search score below threshold below)
score_more_limit = df_docs.loc[docs_scores > vec_score_cut_off, :]
#docs_keep = create_docs_keep_from_df(score_more_limit) #list(compress(docs, score_more_limit))
#print(docs_keep)
if score_more_limit.empty:
return pd.DataFrame()
# Only keep sources that are at least 100 characters long
docs_len = score_more_limit["documents"].str.len() >= 100
#print(docs_len)
length_more_limit = score_more_limit.loc[docs_len == True, :] #pd.Series(docs_len) >= 100
#docs_keep = create_docs_keep_from_df(length_more_limit) #list(compress(docs_keep, length_more_limit))
#print(length_more_limit)
if length_more_limit.empty:
return pd.DataFrame()
length_more_limit['ids'] = length_more_limit['ids'].astype(int)
#length_more_limit.to_csv("length_more_limit.csv", index = None)
# Explode the 'metadatas' dictionary into separate columns
df_metadata_expanded = length_more_limit['metadatas'].apply(pd.Series)
#print(length_more_limit)
#print(df_metadata_expanded)
# Concatenate the original DataFrame with the expanded metadata DataFrame
results_df_out = pd.concat([length_more_limit.drop('metadatas', axis=1), df_metadata_expanded], axis=1)
results_df_out = results_df_out.rename(columns={"documents":"search_text"})
results_df_out = results_df_out.drop(["page_section", "row", "source", "id"], axis=1, errors="ignore")
results_df_out['distances'] = round(results_df_out['distances'].astype(float), 3)
# Join back to original df
# results_df_out = orig_df.merge(length_more_limit[['ids', 'distances']], left_index = True, right_on = "ids", how="inner").sort_values("distances")
# Join on additional files
if not in_join_file.empty:
progress(0.5, desc = "Joining on additional data file")
join_df = in_join_file
join_df[in_join_column] = join_df[in_join_column].astype(str).str.replace("\.0$","", regex=True)
# Duplicates dropped so as not to expand out dataframe
join_df = join_df.drop_duplicates(in_join_column)
results_df_out[search_df_join_column] = results_df_out[search_df_join_column].astype(str).str.replace("\.0$","", regex=True)
results_df_out = results_df_out.merge(join_df,left_on=search_df_join_column, right_on=in_join_column, how="left", suffixes=('','_y'))#.drop(in_join_column, axis=1)
return results_df_out
def bge_simple_retrieval(query_str:str, vectorstore, docs, orig_df_col:str, k_val:int, out_passages:int,
vec_score_cut_off:float, vec_weight:float, in_join_file, in_join_column = None, search_df_join_column = None, device = torch_device, embeddings = embeddings_model, progress=gr.Progress(track_tqdm=True)): # ,vectorstore, embeddings
# print("vectorstore loaded: ", vectorstore)
progress(0, desc = "Conducting semantic search")
ensure_output_folder_exists()
print("Searching")
# Convert it to a PyTorch tensor and transfer to GPU
#vectorstore_tensor = tensor(vectorstore).to(device)
# Load the sentence transformer model and move it to GPU
embeddings = embeddings.to(device)
# Encode the query using the sentence transformer and convert to a PyTorch tensor
query = embeddings.encode(query_str, normalize_embeddings=True)
# query = calc_bge_norm_embeddings(query_str, embeddings_model=embeddings_model, tokenizer=tokenizer)
#query_tensor = tensor(query).to(device)
# if query_tensor.dim() == 1:
# query_tensor = query_tensor.unsqueeze(0) # Reshape to 2D with one row
# Sentence transformers method, not used:
cosine_similarities = query @ vectorstore.T
#cosine_similarities = util.cos_sim(query_tensor, vectorstore_tensor)[0]
#top_results = torch.topk(cos_scores, k=top_k)
# Normalize the query tensor and vectorstore tensor
#query_norm = query_tensor / query_tensor.norm(dim=1, keepdim=True)
#vectorstore_norm = vectorstore_tensor / vectorstore_tensor.norm(dim=1, keepdim=True)
# Calculate cosine similarities (batch processing)
#cosine_similarities = mm(query_norm, vectorstore_norm.T)
#cosine_similarities = mm(query_tensor, vectorstore_tensor.T)
# Flatten the tensor to a 1D array
cosine_similarities = cosine_similarities.flatten()
# Convert to a NumPy array if it's still a PyTorch tensor
#cosine_similarities = cosine_similarities.cpu().numpy()
# Create a Pandas Series
cosine_similarities_series = pd.Series(cosine_similarities)
# Pull out relevent info from docs
page_contents = [doc.page_content for doc in docs]
page_meta = [doc.metadata for doc in docs]
ids_range = range(0,len(page_contents))
ids = [str(element) for element in ids_range]
df_docs = pd.DataFrame(data={"ids": ids,
"documents": page_contents,
"metadatas":page_meta,
"distances":cosine_similarities_series}).sort_values("distances", ascending=False).iloc[0:k_val,:]
results_df_out = process_data_from_scores_df(df_docs, in_join_file, out_passages, vec_score_cut_off, vec_weight, orig_df_col, in_join_column, search_df_join_column)
print("Search complete")
# If nothing found, return error message
if results_df_out.empty:
return 'No result found!', None
query_str_file = query_str.replace(" ", "_")
results_df_name = "output/semantic_search_result_" + today_rev + "_" + query_str_file + ".xlsx"
print("Saving search output to file")
progress(0.7, desc = "Saving search output to file")
# Highlight found text and save to file
results_df_out_wb = create_highlighted_excel_wb(results_df_out, query_str, "search_text")
results_df_out_wb.save(results_df_name)
#results_df_out.to_excel(results_df_name, index= None)
results_first_text = results_df_out.iloc[0, 1]
print("Returning results")
return results_first_text, results_df_name
def docs_to_jina_embed_np_array_deprecated(docs_out, in_file, embeddings_state, return_intermediate_files = "No", embeddings_super_compress = "No", embeddings = embeddings_model, progress=gr.Progress(track_tqdm=True)):
'''
Takes a Langchain document class and saves it into a Chroma sqlite file.
'''
if not in_file:
out_message = "No input file found. Please load in at least one file."
print(out_message)
return out_message, None, None
progress(0.6, desc = "Loading/creating embeddings")
print(f"> Total split documents: {len(docs_out)}")
#print(docs_out)
page_contents = [doc.page_content for doc in docs_out]
## Load in pre-embedded file if exists
file_list = [string.name for string in in_file]
#print(file_list)
embeddings_file_names = [string for string in file_list if "embedding" in string.lower()]
data_file_names = [string for string in file_list if "tokenised" not in string.lower() and "npz" not in string.lower()]# and "gz" not in string.lower()]
data_file_name = data_file_names[0]
data_file_name_no_ext = get_file_path_end(data_file_name)
out_message = "Document processing complete. Ready to search."
# print("embeddings loaded: ", embeddings_out)
if embeddings_state.size == 0:
tic = time.perf_counter()
print("Starting to embed documents.")
#embeddings_list = []
#for page in progress.tqdm(page_contents, desc = "Preparing search index", unit = "rows"):
# embeddings_list.append(embeddings.encode(sentences=page, max_length=1024).tolist())
embeddings_out = embeddings.encode(sentences=page_contents, max_length=1024, show_progress_bar = True, batch_size = 32) # For Jina embeddings
#embeddings_list = embeddings.encode(sentences=page_contents, normalize_embeddings=True).tolist() # For BGE embeddings
#embeddings_list = embeddings.encode(sentences=page_contents).tolist() # For minilm
toc = time.perf_counter()
time_out = f"The embedding took {toc - tic:0.1f} seconds"
print(time_out)
# If you want to save your files for next time
if return_intermediate_files == "Yes":
progress(0.9, desc = "Saving embeddings to file")
if embeddings_super_compress == "No":
semantic_search_file_name = data_file_name_no_ext + '_' + 'embeddings.npz'
np.savez_compressed(semantic_search_file_name, embeddings_out)
else:
semantic_search_file_name = data_file_name_no_ext + '_' + 'embedding_compress.npz'
embeddings_out_round = np.round(embeddings_out, 3)
embeddings_out_round *= 100 # Rounding not currently used
np.savez_compressed(semantic_search_file_name, embeddings_out_round)
return out_message, embeddings_out, semantic_search_file_name
return out_message, embeddings_out, None
else:
# Just return existing embeddings if already exist
embeddings_out = embeddings_state
print(out_message)
return out_message, embeddings_out, None#, None
def jina_simple_retrieval_deprecated(query_str:str, vectorstore, docs, orig_df_col:str, k_val:int, out_passages:int,
vec_score_cut_off:float, vec_weight:float, in_join_file, in_join_column = None, search_df_join_column = None, device = torch_device, embeddings = embeddings_model, progress=gr.Progress(track_tqdm=True)): # ,vectorstore, embeddings
# print("vectorstore loaded: ", vectorstore)
progress(0, desc = "Conducting semantic search")
print("Searching")
# Convert it to a PyTorch tensor and transfer to GPU
vectorstore_tensor = tensor(vectorstore).to(device)
# Load the sentence transformer model and move it to GPU
embeddings = embeddings.to(device)
# Encode the query using the sentence transformer and convert to a PyTorch tensor
query = embeddings.encode(query_str)
query_tensor = tensor(query).to(device)
if query_tensor.dim() == 1:
query_tensor = query_tensor.unsqueeze(0) # Reshape to 2D with one row
# Normalize the query tensor and vectorstore tensor
query_norm = query_tensor / query_tensor.norm(dim=1, keepdim=True)
vectorstore_norm = vectorstore_tensor / vectorstore_tensor.norm(dim=1, keepdim=True)
# Calculate cosine similarities (batch processing)
cosine_similarities = mm(query_norm, vectorstore_norm.T)
# Flatten the tensor to a 1D array
cosine_similarities = cosine_similarities.flatten()
# Convert to a NumPy array if it's still a PyTorch tensor
cosine_similarities = cosine_similarities.cpu().numpy()
# Create a Pandas Series
cosine_similarities_series = pd.Series(cosine_similarities)
# Pull out relevent info from docs
page_contents = [doc.page_content for doc in docs]
page_meta = [doc.metadata for doc in docs]
ids_range = range(0,len(page_contents))
ids = [str(element) for element in ids_range]
df_docs = pd.DataFrame(data={"ids": ids,
"documents": page_contents,
"metadatas":page_meta,
"distances":cosine_similarities_series}).sort_values("distances", ascending=False).iloc[0:k_val,:]
results_df_out = process_data_from_scores_df(df_docs, in_join_file, out_passages, vec_score_cut_off, vec_weight, orig_df_col, in_join_column, search_df_join_column)
print("Search complete")
# If nothing found, return error message
if results_df_out.empty:
return 'No result found!', None
query_str_file = query_str.replace(" ", "_")
results_df_name = "semantic_search_result_" + today_rev + "_" + query_str_file + ".xlsx"
print("Saving search output to file")
progress(0.7, desc = "Saving search output to file")
results_df_out.to_excel(results_df_name, index= None)
results_first_text = results_df_out.iloc[0, 1]
print("Returning results")
return results_first_text, results_df_name
# Deprecated Chroma functions - kept just in case needed in future.
# Chroma support is currently deprecated
# Import Chroma and instantiate a client. The default Chroma client is ephemeral, meaning it will not save to disk.
#import chromadb
#from chromadb.config import Settings
#from typing_extensions import Protocol
#from chromadb import Documents, EmbeddingFunction, Embeddings
# Remove Chroma database file. If it exists as it can cause issues
#chromadb_file = "chroma.sqlite3"
#if os.path.isfile(chromadb_file):
# os.remove(chromadb_file)
def docs_to_chroma_save_deprecated(docs_out, embeddings = embeddings_model, progress=gr.Progress()):
'''
Takes a Langchain document class and saves it into a Chroma sqlite file. Not currently used.
'''
print(f"> Total split documents: {len(docs_out)}")
#print(docs_out)
page_contents = [doc.page_content for doc in docs_out]
page_meta = [doc.metadata for doc in docs_out]
ids_range = range(0,len(page_contents))
ids = [str(element) for element in ids_range]
tic = time.perf_counter()
#embeddings_list = []
#for page in progress.tqdm(page_contents, desc = "Preparing search index", unit = "rows"):
# embeddings_list.append(embeddings.encode(sentences=page, max_length=1024).tolist())
embeddings_list = embeddings.encode(sentences=page_contents, max_length=256, show_progress_bar = True, batch_size = 32).tolist() # For Jina embeddings
#embeddings_list = embeddings.encode(sentences=page_contents, normalize_embeddings=True).tolist() # For BGE embeddings
#embeddings_list = embeddings.encode(sentences=page_contents).tolist() # For minilm
toc = time.perf_counter()
time_out = f"The embedding took {toc - tic:0.1f} seconds"
#pd.Series(embeddings_list).to_csv("embeddings_out.csv")
# Jina tiny
# This takes about 300 seconds for 240,000 records = 800 / second, 1024 max length
# For 50k records:
# 61 seconds at 1024 max length
# 55 seconds at 512 max length
# 43 seconds at 256 max length
# 31 seconds at 128 max length
# The embedding took 1372.5 seconds at 256 max length for 655,020 case notes
# BGE small
# 96 seconds for 50k records at 512 length
# all-MiniLM-L6-v2
# 42.5 seconds at (256?) max length
# paraphrase-MiniLM-L3-v2
# 22 seconds for 128 max length
print(time_out)
chroma_tic = time.perf_counter()
# Create a new Chroma collection to store the documents and metadata. We don't need to specify an embedding fuction, and the default will be used.
client = chromadb.PersistentClient(path="./last_year", settings=Settings(
anonymized_telemetry=False))
try:
print("Deleting existing collection.")
#collection = client.get_collection(name="my_collection")
client.delete_collection(name="my_collection")
print("Creating new collection.")
collection = client.create_collection(name="my_collection")
except:
print("Creating new collection.")
collection = client.create_collection(name="my_collection")
# Match batch size is about 40,000, so add that amount in a loop
def create_batch_ranges(in_list, batch_size=40000):
total_rows = len(in_list)
ranges = []
for start in range(0, total_rows, batch_size):
end = min(start + batch_size, total_rows)
ranges.append(range(start, end))
return ranges
batch_ranges = create_batch_ranges(embeddings_list)
print(batch_ranges)
for row_range in progress.tqdm(batch_ranges, desc = "Creating vector database", unit = "batches of 40,000 rows"):
collection.add(
documents = page_contents[row_range[0]:row_range[-1]],
embeddings = embeddings_list[row_range[0]:row_range[-1]],
metadatas = page_meta[row_range[0]:row_range[-1]],
ids = ids[row_range[0]:row_range[-1]])
#print("Here")
# print(collection.count())
#chatf.vectorstore = vectorstore_func
chroma_toc = time.perf_counter()
chroma_time_out = f"Loading to Chroma db took {chroma_toc - chroma_tic:0.1f} seconds"
print(chroma_time_out)
out_message = "Document processing complete"
return out_message, collection
def chroma_retrieval_deprecated(query_str:str, vectorstore, docs, orig_df_col:str, k_val:int, out_passages:int,
vec_score_cut_off:float, vec_weight:float, in_join_file = None, in_join_column = None, search_df_join_column = None, embeddings = embeddings_model): # ,vectorstore, embeddings
query = embeddings.encode(query_str).tolist()
docs = vectorstore.query(
query_embeddings=query,
n_results= k_val # No practical limit on number of responses returned
#where={"metadata_field": "is_equal_to_this"},
#where_document={"$contains":"search_string"}
)
df_docs = pd.DataFrame(data={'ids': docs['ids'][0],
'documents': docs['documents'][0],
'metadatas':docs['metadatas'][0],
'distances':docs['distances'][0]#,
#'embeddings': docs['embeddings']
})
results_df_out = process_data_from_scores_df(df_docs, in_join_file, out_passages, vec_score_cut_off, vec_weight, orig_df_col, in_join_column, search_df_join_column)
results_df_name = "output/semantic_search_result.csv"
results_df_out.to_csv(results_df_name, index= None)
results_first_text = results_df_out[orig_df_col].iloc[0]
return results_first_text, results_df_name
|