File size: 7,458 Bytes
99d6fba
 
 
 
 
2bcd818
99d6fba
 
 
 
 
ea0dd40
99d6fba
 
 
 
 
 
 
 
 
 
 
 
ea0dd40
d3ff2e2
99d6fba
 
ea0dd40
 
 
99d6fba
ea0dd40
 
 
99d6fba
ea0dd40
 
 
99d6fba
 
 
 
 
 
 
 
 
 
 
 
 
 
ea0dd40
 
99d6fba
 
 
ea0dd40
 
 
99d6fba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea0dd40
 
 
 
 
 
 
 
 
 
 
 
 
 
4ee3470
d3ff2e2
4ee3470
 
650da6e
 
 
 
 
63049fe
4ee3470
63049fe
 
99d6fba
 
 
739b386
63049fe
 
4ee3470
63049fe
 
ea0dd40
63049fe
99d6fba
 
 
650da6e
99d6fba
 
 
 
650da6e
99d6fba
4ee3470
99d6fba
 
 
 
 
 
2bcd818
 
99d6fba
63049fe
99d6fba
 
 
 
2bcd818
 
 
4ee3470
99d6fba
2bcd818
 
99d6fba
 
 
650da6e
 
 
 
99d6fba
650da6e
 
 
99d6fba
650da6e
99d6fba
 
63049fe
99d6fba
650da6e
 
 
 
99d6fba
650da6e
99d6fba
650da6e
 
99d6fba
 
 
 
 
 
 
63049fe
99d6fba
200480d
99d6fba
650da6e
 
99d6fba
650da6e
 
99d6fba
4ee3470
99d6fba
 
ea0dd40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import time
import ast
import gzip
import pandas as pd
import gradio as gr
import pickle
from typing import Type, List, Literal
from pydantic import BaseModel, Field

# Creating an alias for pandas DataFrame using Type
PandasDataFrame = Type[pd.DataFrame]
PandasSeries = Type[pd.Series]

class Document(BaseModel):
    """Class for storing a piece of text and associated metadata. Implementation adapted from Langchain code: https://github.com/langchain-ai/langchain/blob/master/libs/core/langchain_core/documents/base.py"""

    page_content: str
    """String text."""
    metadata: dict = Field(default_factory=dict)
    """Arbitrary metadata about the page content (e.g., source, relationships to other
        documents, etc.).
    """
    type: Literal["Document"] = "Document"

from search_funcs.helper_functions import get_file_path_end, ensure_output_folder_exists
from search_funcs.bm25_functions import save_prepared_bm25_data, output_folder
from search_funcs.clean_funcs import initial_clean

def combine_metadata_columns(df:PandasDataFrame, cols:List[str]) -> PandasSeries:
    '''
    Construct a metadata column as a string version of a dictionary for later parsing.

    Parameters:
    - df (PandasDataFrame): Data frame of search data.
	- cols (List[str]): List of column names that will be included in the output metadata column.

	Returns:
	- PandasSeries: A series containing the metadata elements combined into a dictionary format as a string.
    '''

    df['metadata'] = '{'
    df['blank_column'] = ''

    for n, col in enumerate(cols):
        df[col] = df[col].astype(str).str.replace('"',"'").str.replace('\n', ' ').str.replace('\r', ' ').str.replace('\r\n', ' ').str.cat(df['blank_column'].astype(str), sep="")

        df['metadata'] = df['metadata'] + '"' + cols[n] + '": "' + df[col] + '", '


    df['metadata'] = (df['metadata'] + "}").str.replace(', }', '}').str.replace('", }"', '}')

    return df['metadata']

def clean_line_breaks(text:str):
    '''Replace \n and \r\n with a space'''
    return text.replace('\n', ' ').replace('\r', ' ').replace('\r\n', ' ')

def parse_metadata(row):
    '''
    Parse a string instance of a dictionary into a Python object.
    '''
    try:
        # Ensure the 'title' field is a string and clean line breaks
        #if 'TITLE' in row:
        #    row['TITLE'] = clean_line_breaks(row['TITLE'])

        # Convert the row to a string if it's not already
        row_str = str(row) if not isinstance(row, str) else row

        row_str.replace('\n', ' ').replace('\r', ' ').replace('\r\n', ' ')

        # Parse the string
        metadata = ast.literal_eval(row_str)
        # Process metadata
        return metadata
    except SyntaxError as e:
        print(f"Failed to parse metadata: {row_str}")
        print(f"Error: {e}")
        # Handle the error or log it
        return None  # or some default value

def csv_excel_text_to_docs(df:PandasDataFrame, in_file:List[str], text_column:str, clean:str = "No", return_intermediate_files:str = "No", progress=gr.Progress(track_tqdm=True)) -> tuple:
    """Converts a DataFrame's content to a list of dictionaries in the 'Document' format, containing page_content and associated metadata.
    
    Parameters:
    - df (PandasDataFrame): Data frame of search data.
	- in_file (List[str]): List of input file names.
	- text_column (str): The text column that will be searched.
	- clean (str): Whether the text is cleaned before searching.
	- return_intermediate_files (str): Whether intermediate processing files are saved to file.
	- progress (gr.Progress, optional): The progress tracker for the operation.

	Returns:
	- tuple: A tuple containing data outputs in a Document class format, an output message, and a list of output file paths.
    """

    ensure_output_folder_exists(output_folder)
    output_list = []

    if not isinstance(text_column, str):
        text_column = str(text_column)

    print("text_column:", text_column)

    if not in_file:
        return None, "Please load in at least one file.", output_list

    progress(0, desc = "Loading in data")
    
    file_list = [string.name for string in in_file]

    data_file_names = [string for string in file_list if "tokenised" not in string and "npz" not in string.lower()]

    if not data_file_names:
        return doc_sections, "Please load in at least one csv/Excel/parquet data file.", output_list

    if not text_column:
        return None, "Please enter a column name to search", output_list

    data_file_name = data_file_names[0]

    # Check if file is a document format, and explode out as needed
    if "prep_docs" in data_file_name:
        print("Loading in documents from file.")

        doc_sections = df

        print("doc_sections:", doc_sections[0])

        return doc_sections, "Finished preparing documents", output_list

    ingest_tic = time.perf_counter()

    doc_sections = []
    df[text_column] = df[text_column].astype(str).str.strip() # Ensure column is a string column

    original_text_column = text_column

    if clean == "Yes":
        progress(0.1, desc = "Cleaning data")
        clean_tic = time.perf_counter()
        print("Starting data clean.")
        
        df_list = list(df[text_column])
        df_list = initial_clean(df_list)

        # Save to file if you have cleaned the data. Text column has now been renamed with '_cleaned' at the send
        out_file_name, text_column, df = save_prepared_bm25_data(data_file_name, df_list, df, text_column)

        df[text_column] = df_list

        clean_toc = time.perf_counter()
        clean_time_out = f"Cleaning the text took {clean_toc - clean_tic:0.1f} seconds."
        print(clean_time_out)
    
    else:
        df_list = list(df[text_column])
        prepared_text_df = pd.DataFrame(data={text_column:df_list})

        # Drop original column from input file to reduce file size
        in_df = df.drop(text_column, axis = 1)
        df = pd.concat([in_df, prepared_text_df], axis = 1)

    cols = [col for col in df.columns if col != original_text_column]
    df["metadata"] = combine_metadata_columns(df, cols)

    progress(0.3, desc = "Converting data to document format")

    #print("text_column name:", text_column)
    #print("text_column:", df[text_column])
    #print("metadata", df["metadata"])

    # Create a list of Document objects
    doc_sections = [Document(page_content=row[text_column], metadata= parse_metadata(row["metadata"]))
                for index, row in progress.tqdm(df.iterrows(), desc = "Splitting up text", unit = "rows")]
    
    print("doc_sections:", doc_sections[0])

    ingest_toc = time.perf_counter()

    ingest_time_out = f"Preparing documents took {ingest_toc - ingest_tic:0.1f} seconds"
    print(ingest_time_out)

    if return_intermediate_files == "Yes":
        progress(0.5, desc = "Saving prepared documents")
        data_file_out_name_no_ext = get_file_path_end(data_file_name)
        file_name = data_file_out_name_no_ext

        if clean == "No": out_doc_file_name = output_folder + file_name + "_prep_docs.pkl.gz"
        elif clean == "Yes": out_doc_file_name = output_folder + file_name + "_cleaned_prep_docs.pkl.gz"

        with gzip.open(out_doc_file_name, 'wb') as file:
            pickle.dump(doc_sections, file)

        output_list.append(out_doc_file_name)
        print("Documents saved to file.")

    return doc_sections, "Finished preparing documents.", output_list