File size: 7,458 Bytes
99d6fba 2bcd818 99d6fba ea0dd40 99d6fba ea0dd40 d3ff2e2 99d6fba ea0dd40 99d6fba ea0dd40 99d6fba ea0dd40 99d6fba ea0dd40 99d6fba ea0dd40 99d6fba ea0dd40 4ee3470 d3ff2e2 4ee3470 650da6e 63049fe 4ee3470 63049fe 99d6fba 739b386 63049fe 4ee3470 63049fe ea0dd40 63049fe 99d6fba 650da6e 99d6fba 650da6e 99d6fba 4ee3470 99d6fba 2bcd818 99d6fba 63049fe 99d6fba 2bcd818 4ee3470 99d6fba 2bcd818 99d6fba 650da6e 99d6fba 650da6e 99d6fba 650da6e 99d6fba 63049fe 99d6fba 650da6e 99d6fba 650da6e 99d6fba 650da6e 99d6fba 63049fe 99d6fba 200480d 99d6fba 650da6e 99d6fba 650da6e 99d6fba 4ee3470 99d6fba ea0dd40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import time
import ast
import gzip
import pandas as pd
import gradio as gr
import pickle
from typing import Type, List, Literal
from pydantic import BaseModel, Field
# Creating an alias for pandas DataFrame using Type
PandasDataFrame = Type[pd.DataFrame]
PandasSeries = Type[pd.Series]
class Document(BaseModel):
"""Class for storing a piece of text and associated metadata. Implementation adapted from Langchain code: https://github.com/langchain-ai/langchain/blob/master/libs/core/langchain_core/documents/base.py"""
page_content: str
"""String text."""
metadata: dict = Field(default_factory=dict)
"""Arbitrary metadata about the page content (e.g., source, relationships to other
documents, etc.).
"""
type: Literal["Document"] = "Document"
from search_funcs.helper_functions import get_file_path_end, ensure_output_folder_exists
from search_funcs.bm25_functions import save_prepared_bm25_data, output_folder
from search_funcs.clean_funcs import initial_clean
def combine_metadata_columns(df:PandasDataFrame, cols:List[str]) -> PandasSeries:
'''
Construct a metadata column as a string version of a dictionary for later parsing.
Parameters:
- df (PandasDataFrame): Data frame of search data.
- cols (List[str]): List of column names that will be included in the output metadata column.
Returns:
- PandasSeries: A series containing the metadata elements combined into a dictionary format as a string.
'''
df['metadata'] = '{'
df['blank_column'] = ''
for n, col in enumerate(cols):
df[col] = df[col].astype(str).str.replace('"',"'").str.replace('\n', ' ').str.replace('\r', ' ').str.replace('\r\n', ' ').str.cat(df['blank_column'].astype(str), sep="")
df['metadata'] = df['metadata'] + '"' + cols[n] + '": "' + df[col] + '", '
df['metadata'] = (df['metadata'] + "}").str.replace(', }', '}').str.replace('", }"', '}')
return df['metadata']
def clean_line_breaks(text:str):
'''Replace \n and \r\n with a space'''
return text.replace('\n', ' ').replace('\r', ' ').replace('\r\n', ' ')
def parse_metadata(row):
'''
Parse a string instance of a dictionary into a Python object.
'''
try:
# Ensure the 'title' field is a string and clean line breaks
#if 'TITLE' in row:
# row['TITLE'] = clean_line_breaks(row['TITLE'])
# Convert the row to a string if it's not already
row_str = str(row) if not isinstance(row, str) else row
row_str.replace('\n', ' ').replace('\r', ' ').replace('\r\n', ' ')
# Parse the string
metadata = ast.literal_eval(row_str)
# Process metadata
return metadata
except SyntaxError as e:
print(f"Failed to parse metadata: {row_str}")
print(f"Error: {e}")
# Handle the error or log it
return None # or some default value
def csv_excel_text_to_docs(df:PandasDataFrame, in_file:List[str], text_column:str, clean:str = "No", return_intermediate_files:str = "No", progress=gr.Progress(track_tqdm=True)) -> tuple:
"""Converts a DataFrame's content to a list of dictionaries in the 'Document' format, containing page_content and associated metadata.
Parameters:
- df (PandasDataFrame): Data frame of search data.
- in_file (List[str]): List of input file names.
- text_column (str): The text column that will be searched.
- clean (str): Whether the text is cleaned before searching.
- return_intermediate_files (str): Whether intermediate processing files are saved to file.
- progress (gr.Progress, optional): The progress tracker for the operation.
Returns:
- tuple: A tuple containing data outputs in a Document class format, an output message, and a list of output file paths.
"""
ensure_output_folder_exists(output_folder)
output_list = []
if not isinstance(text_column, str):
text_column = str(text_column)
print("text_column:", text_column)
if not in_file:
return None, "Please load in at least one file.", output_list
progress(0, desc = "Loading in data")
file_list = [string.name for string in in_file]
data_file_names = [string for string in file_list if "tokenised" not in string and "npz" not in string.lower()]
if not data_file_names:
return doc_sections, "Please load in at least one csv/Excel/parquet data file.", output_list
if not text_column:
return None, "Please enter a column name to search", output_list
data_file_name = data_file_names[0]
# Check if file is a document format, and explode out as needed
if "prep_docs" in data_file_name:
print("Loading in documents from file.")
doc_sections = df
print("doc_sections:", doc_sections[0])
return doc_sections, "Finished preparing documents", output_list
ingest_tic = time.perf_counter()
doc_sections = []
df[text_column] = df[text_column].astype(str).str.strip() # Ensure column is a string column
original_text_column = text_column
if clean == "Yes":
progress(0.1, desc = "Cleaning data")
clean_tic = time.perf_counter()
print("Starting data clean.")
df_list = list(df[text_column])
df_list = initial_clean(df_list)
# Save to file if you have cleaned the data. Text column has now been renamed with '_cleaned' at the send
out_file_name, text_column, df = save_prepared_bm25_data(data_file_name, df_list, df, text_column)
df[text_column] = df_list
clean_toc = time.perf_counter()
clean_time_out = f"Cleaning the text took {clean_toc - clean_tic:0.1f} seconds."
print(clean_time_out)
else:
df_list = list(df[text_column])
prepared_text_df = pd.DataFrame(data={text_column:df_list})
# Drop original column from input file to reduce file size
in_df = df.drop(text_column, axis = 1)
df = pd.concat([in_df, prepared_text_df], axis = 1)
cols = [col for col in df.columns if col != original_text_column]
df["metadata"] = combine_metadata_columns(df, cols)
progress(0.3, desc = "Converting data to document format")
#print("text_column name:", text_column)
#print("text_column:", df[text_column])
#print("metadata", df["metadata"])
# Create a list of Document objects
doc_sections = [Document(page_content=row[text_column], metadata= parse_metadata(row["metadata"]))
for index, row in progress.tqdm(df.iterrows(), desc = "Splitting up text", unit = "rows")]
print("doc_sections:", doc_sections[0])
ingest_toc = time.perf_counter()
ingest_time_out = f"Preparing documents took {ingest_toc - ingest_tic:0.1f} seconds"
print(ingest_time_out)
if return_intermediate_files == "Yes":
progress(0.5, desc = "Saving prepared documents")
data_file_out_name_no_ext = get_file_path_end(data_file_name)
file_name = data_file_out_name_no_ext
if clean == "No": out_doc_file_name = output_folder + file_name + "_prep_docs.pkl.gz"
elif clean == "Yes": out_doc_file_name = output_folder + file_name + "_cleaned_prep_docs.pkl.gz"
with gzip.open(out_doc_file_name, 'wb') as file:
pickle.dump(doc_sections, file)
output_list.append(out_doc_file_name)
print("Documents saved to file.")
return doc_sections, "Finished preparing documents.", output_list |