data_text_search / Dockerfile
seanpedrickcase's picture
Updated Dockerfile and requirements files to create a smaller container
91bd588
raw
history blame
2.37 kB
# First stage: build dependencies
FROM public.ecr.aws/docker/library/python:3.11.9-slim-bookworm AS builder
# Optional - install Lambda web adapter in case you want to run with with an AWS Lamba function URL
# COPY --from=public.ecr.aws/awsguru/aws-lambda-adapter:0.8.3 /lambda-adapter /opt/extensions/lambda-adapter
# Update apt
RUN apt-get update && rm -rf /var/lib/apt/lists/*
# Create a directory for the model
RUN mkdir -p /model /model/minilm /install
WORKDIR /src
COPY requirements_aws.txt .
RUN pip install torch==2.4.0+cpu --target=/install --index-url https://download.pytorch.org/whl/cpu \
&& pip install --no-cache-dir --target=/install sentence-transformers==3.0.1 --no-deps \
&& pip install --no-cache-dir --target=/install -r requirements_aws.txt \
&& pip install --no-cache-dir --target=/install gradio==4.41.0
# Add /install to the PYTHONPATH
ENV PYTHONPATH="/install:${PYTHONPATH}"
# Download the embedding model during the build process. Create a directory for the model and download specific files using huggingface_hub
COPY download_model.py /src/download_model.py
RUN python /src/download_model.py
# Stage 2: Final runtime image
FROM public.ecr.aws/docker/library/python:3.11.9-slim-bookworm
# Set up a new user named "user" with user ID 1000
RUN useradd -m -u 1000 user
# Copy installed packages from builder stage
COPY --from=builder /install /usr/local/lib/python3.11/site-packages/
# Change ownership of /home/user directory
RUN chown -R user:user /home/user
# Make output folder
RUN mkdir -p /home/user/app/output && mkdir -p /home/user/.cache/huggingface/hub && chown -R user:user /home/user
# Copy models from the builder stage
COPY --from=builder /model/minilm /home/user/app/model/minilm
# Switch to the "user" user
USER user
# Set home to the user's home directory
ENV HOME=/home/user \
PATH=/home/user/.local/bin:$PATH \
PYTHONPATH=$HOME/app \
PYTHONUNBUFFERED=1 \
PYTHONDONTWRITEBYTECODE=1 \
GRADIO_ALLOW_FLAGGING=never \
GRADIO_NUM_PORTS=1 \
GRADIO_SERVER_NAME=0.0.0.0 \
GRADIO_SERVER_PORT=7860 \
GRADIO_THEME=huggingface \
AWS_STS_REGIONAL_ENDPOINT=regional \
SYSTEM=spaces
# Set the working directory to the user's home directory
WORKDIR $HOME/app
# Copy the current directory contents into the container at $HOME/app setting the owner to the user
COPY --chown=user . $HOME/app
CMD ["python", "app.py"]