data_text_search / search_funcs /convert_files_to_parquet.py
seanpedrickcase's picture
Many changes to code organisation. More efficient searches from using intermediate outputs. Version 0.1
99d6fba
raw
history blame
965 Bytes
# %%
import pandas as pd
import csv
# %%
# Define your file paths
file_dir = "../"
extracted_file_path = file_dir + "2022_08_case_notes.txt"
parquet_file_path = file_dir + "2022_08_case_notes.parquet"
# %%
# Read the TXT file using the csv module and convert to DataFrame
csv.field_size_limit(1000000) # set to a higher value
data_list = []
with open(extracted_file_path, mode='r', encoding='iso-8859-1') as file:
csv_reader = csv.reader(file, delimiter=',') # Change the delimiter if needed
for row in csv_reader:
data_list.append(row)
# Filter rows that have the same number of columns as the header
header = data_list[0]
filtered_data = [row for row in data_list if len(row) == len(header)]
# Convert list of rows to DataFrame
casenotes = pd.DataFrame(filtered_data[1:], columns=header) # Assuming first row is header
print(casenotes.head()) # Display the first few rows of the DataFrame
# %%
casenotes.to_parquet(parquet_file_path)