Spaces:
Sleeping
Sleeping
# ## Some functions to clean text | |
# ### Some other suggested cleaning approaches | |
# | |
# #### From here: https://shravan-kuchkula.github.io/topic-modeling/#interactive-plot-showing-results-of-k-means-clustering-lda-topic-modeling-and-sentiment-analysis | |
# | |
# - remove_hyphens | |
# - tokenize_text | |
# - remove_special_characters | |
# - convert to lower case | |
# - remove stopwords | |
# - lemmatize the token | |
# - remove short tokens | |
# - keep only words in wordnet | |
# - I ADDED ON - creating custom stopwords list | |
# + | |
# Create a custom stop words list | |
import nltk | |
import re | |
import string | |
from nltk.stem import WordNetLemmatizer | |
from nltk.stem import PorterStemmer | |
from nltk.corpus import wordnet as wn | |
from nltk import word_tokenize | |
# Add calendar months onto stop words | |
import calendar | |
from tqdm import tqdm | |
import gradio as gr | |
stemmer = PorterStemmer() | |
nltk.download('stopwords') | |
nltk.download('wordnet') | |
#nltk.download('words') | |
#nltk.download('names') | |
#nltk.corpus.words.words('en') | |
#from sklearn.feature_extraction import text | |
# Adding common names to stopwords | |
all_names = [x.lower() for x in list(nltk.corpus.names.words())] | |
# Adding custom words to the stopwords | |
custom_words = [] | |
my_stop_words = custom_words | |
cal_month = (list(calendar.month_name)) | |
cal_month = [x.lower() for x in cal_month] | |
# Remove blanks | |
cal_month = [i for i in cal_month if i] | |
#print(cal_month) | |
custom_words.extend(cal_month) | |
#my_stop_words = frozenset(text.ENGLISH_STOP_WORDS.union(custom_words).union(all_names)) | |
#custom_stopwords = my_stop_words | |
# - | |
# #### Some of my cleaning functions | |
''' | |
# + | |
# Remove all html elements from the text. Inspired by this: https://stackoverflow.com/questions/9662346/python-code-to-remove-html-tags-from-a-string | |
def remove_email_start(text): | |
cleanr = re.compile('.*importance:|.*subject:') | |
cleantext = re.sub(cleanr, '', text) | |
return cleantext | |
def remove_email_end(text): | |
cleanr = re.compile('kind regards.*|many thanks.*|sincerely.*') | |
cleantext = re.sub(cleanr, '', text) | |
return cleantext | |
def cleanhtml(text): | |
cleanr = re.compile('<.*?>|&([a-z0-9]+|#[0-9]{1,6}|#x[0-9a-f]{1,6});|\xa0') | |
cleantext = re.sub(cleanr, '', text) | |
return cleantext | |
## The above doesn't work when there is no > at the end of the string to match the initial <. Trying this: <[^>]+> but needs work: https://stackoverflow.com/questions/2013124/regex-matching-up-to-the-first-occurrence-of-a-character | |
# Remove all email addresses and numbers from the text | |
def cleanemail(text): | |
cleanr = re.compile('\S*@\S*\s?|\xa0') | |
cleantext = re.sub(cleanr, '', text) | |
return cleantext | |
def cleannum(text): | |
cleanr = re.compile(r'[0-9]+') | |
cleantext = re.sub(cleanr, '', text) | |
return cleantext | |
def cleanpostcode(text): | |
cleanr = re.compile(r'(\b(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]? ?[0-9][A-Z]{2})|((GIR ?0A{2})\b$)|(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]? ?[0-9]{1}?)$)|(\b(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]?)\b$)') | |
cleantext = re.sub(cleanr, '', text) | |
return cleantext | |
def cleanwarning(text): | |
cleanr = re.compile('caution: this email originated from outside of the organization. do not click links or open attachments unless you recognize the sender and know the content is safe.') | |
cleantext = re.sub(cleanr, '', text) | |
return cleantext | |
# - | |
def initial_clean(texts): | |
clean_texts = [] | |
for text in texts: | |
text = remove_email_start(text) | |
text = remove_email_end(text) | |
text = cleanpostcode(text) | |
text = remove_hyphens(text) | |
text = cleanhtml(text) | |
text = cleanemail(text) | |
#text = cleannum(text) | |
clean_texts.append(text) | |
return clean_texts | |
''' | |
# Pre-compiling the regular expressions for efficiency | |
email_start_pattern = re.compile('.*importance:|.*subject:') | |
email_end_pattern = re.compile('kind regards.*|many thanks.*|sincerely.*') | |
html_pattern = re.compile('<.*?>|&([a-z0-9]+|#[0-9]{1,6}|#x[0-9a-f]{1,6});|\xa0') | |
email_pattern = re.compile('\S*@\S*\s?') | |
num_pattern = re.compile(r'[0-9]+') | |
postcode_pattern = re.compile(r'(\b(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]? ?[0-9][A-Z]{2})|((GIR ?0A{2})\b$)|(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]? ?[0-9]{1}?)$)|(\b(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]?)\b$)') | |
warning_pattern = re.compile('caution: this email originated from outside of the organization. do not click links or open attachments unless you recognize the sender and know the content is safe.') | |
nbsp_pattern = re.compile(r' ') | |
def stem_sentence(sentence): | |
words = sentence.split() | |
stemmed_words = [stemmer.stem(word).lower().rstrip("'") for word in words] | |
return stemmed_words | |
def stem_sentences(sentences, progress=gr.Progress()): | |
"""Stem each sentence in a list of sentences.""" | |
stemmed_sentences = [stem_sentence(sentence) for sentence in progress.tqdm(sentences)] | |
return stemmed_sentences | |
def get_lemma_text(text): | |
# Tokenize the input string into words | |
tokens = word_tokenize(text) | |
lemmas = [] | |
for word in tokens: | |
if len(word) > 3: | |
lemma = wn.morphy(word) | |
else: | |
lemma = None | |
if lemma is None: | |
lemmas.append(word) | |
else: | |
lemmas.append(lemma) | |
return lemmas | |
def get_lemma_tokens(tokens): | |
# Tokenize the input string into words | |
lemmas = [] | |
for word in tokens: | |
if len(word) > 3: | |
lemma = wn.morphy(word) | |
else: | |
lemma = None | |
if lemma is None: | |
lemmas.append(word) | |
else: | |
lemmas.append(lemma) | |
return lemmas | |
def initial_clean(texts , progress=gr.Progress()): | |
clean_texts = [] | |
i = 1 | |
#progress(0, desc="Cleaning texts") | |
for text in progress.tqdm(texts, desc = "Cleaning data", unit = "rows"): | |
#print("Cleaning row: ", i) | |
text = re.sub(email_start_pattern, '', text) | |
text = re.sub(email_end_pattern, '', text) | |
text = re.sub(postcode_pattern, '', text) | |
text = remove_hyphens(text) | |
text = re.sub(html_pattern, '', text) | |
text = re.sub(email_pattern, '', text) | |
text = re.sub(nbsp_pattern, '', text) | |
#text = re.sub(warning_pattern, '', text) | |
#text = stem_sentence(text) | |
text = get_lemma_text(text) | |
text = ' '.join(text) | |
# Uncomment the next line if you want to remove numbers as well | |
# text = re.sub(num_pattern, '', text) | |
clean_texts.append(text) | |
i += 1 | |
return clean_texts | |
# Sample execution | |
#sample_texts = [ | |
# "Hello, this is a test email. kind regards, John", | |
# "<div>Email content here</div> many thanks, Jane", | |
# "caution: this email originated from outside of the organization. do not click links or open attachments unless you recognize the sender and know the content is safe.", | |
# "[email protected]", | |
# "Address: 1234 Elm St, AB12 3CD" | |
#] | |
#initial_clean(sample_texts) | |
# + | |
all_names = [x.lower() for x in list(nltk.corpus.names.words())] | |
def remove_hyphens(text_text): | |
return re.sub(r'(\w+)-(\w+)-?(\w)?', r'\1 \2 \3', text_text) | |
# tokenize text | |
def tokenize_text(text_text): | |
TOKEN_PATTERN = r'\s+' | |
regex_wt = nltk.RegexpTokenizer(pattern=TOKEN_PATTERN, gaps=True) | |
word_tokens = regex_wt.tokenize(text_text) | |
return word_tokens | |
def remove_characters_after_tokenization(tokens): | |
pattern = re.compile('[{}]'.format(re.escape(string.punctuation))) | |
filtered_tokens = filter(None, [pattern.sub('', token) for token in tokens]) | |
return filtered_tokens | |
def convert_to_lowercase(tokens): | |
return [token.lower() for token in tokens if token.isalpha()] | |
def remove_stopwords(tokens, custom_stopwords): | |
stopword_list = nltk.corpus.stopwords.words('english') | |
stopword_list += my_stop_words | |
filtered_tokens = [token for token in tokens if token not in stopword_list] | |
return filtered_tokens | |
def remove_names(tokens): | |
stopword_list = list(nltk.corpus.names.words()) | |
stopword_list = [x.lower() for x in stopword_list] | |
filtered_tokens = [token for token in tokens if token not in stopword_list] | |
return filtered_tokens | |
def remove_short_tokens(tokens): | |
return [token for token in tokens if len(token) > 3] | |
def keep_only_words_in_wordnet(tokens): | |
return [token for token in tokens if wn.synsets(token)] | |
def apply_lemmatize(tokens, wnl=WordNetLemmatizer()): | |
def lem_word(word): | |
if len(word) > 3: out_word = wnl.lemmatize(word) | |
else: out_word = word | |
return out_word | |
return [lem_word(token) for token in tokens] | |
# + | |
### Do the cleaning | |
def cleanTexttexts(texts): | |
clean_texts = [] | |
for text in texts: | |
#text = remove_email_start(text) | |
#text = remove_email_end(text) | |
text = remove_hyphens(text) | |
text = cleanhtml(text) | |
text = cleanemail(text) | |
text = cleanpostcode(text) | |
text = cleannum(text) | |
#text = cleanwarning(text) | |
text_i = tokenize_text(text) | |
text_i = remove_characters_after_tokenization(text_i) | |
#text_i = remove_names(text_i) | |
text_i = convert_to_lowercase(text_i) | |
#text_i = remove_stopwords(text_i, my_stop_words) | |
text_i = get_lemma(text_i) | |
#text_i = remove_short_tokens(text_i) | |
text_i = keep_only_words_in_wordnet(text_i) | |
text_i = apply_lemmatize(text_i) | |
clean_texts.append(text_i) | |
return clean_texts | |
# - | |
def remove_dups_text(data_samples_ready, data_samples_clean, data_samples): | |
# Identify duplicates in the data: https://stackoverflow.com/questions/44191465/efficiently-identify-duplicates-in-large-list-500-000 | |
# Only identifies the second duplicate | |
seen = set() | |
dupes = [] | |
for i, doi in enumerate(data_samples_ready): | |
if doi not in seen: | |
seen.add(doi) | |
else: | |
dupes.append(i) | |
#data_samples_ready[dupes[0:]] | |
# To see a specific duplicated value you know the position of | |
#matching = [s for s in data_samples_ready if data_samples_ready[83] in s] | |
#matching | |
# Remove duplicates only (keep first instance) | |
#data_samples_ready = list( dict.fromkeys(data_samples_ready) ) # This way would keep one version of the duplicates | |
### Remove all duplicates including original instance | |
# Identify ALL duplicates including initial values | |
# https://stackoverflow.com/questions/11236006/identify-duplicate-values-in-a-list-in-python | |
from collections import defaultdict | |
D = defaultdict(list) | |
for i,item in enumerate(data_samples_ready): | |
D[item].append(i) | |
D = {k:v for k,v in D.items() if len(v)>1} | |
# https://stackoverflow.com/questions/952914/how-to-make-a-flat-list-out-of-a-list-of-lists | |
L = list(D.values()) | |
flat_list_dups = [item for sublist in L for item in sublist] | |
# https://stackoverflow.com/questions/11303225/how-to-remove-multiple-indexes-from-a-list-at-the-same-time | |
for index in sorted(flat_list_dups, reverse=True): | |
del data_samples_ready[index] | |
del data_samples_clean[index] | |
del data_samples[index] | |
# Remove blanks | |
data_samples_ready = [i for i in data_samples_ready if i] | |
data_samples_clean = [i for i in data_samples_clean if i] | |
data_samples = [i for i in data_samples if i] | |
return data_samples_ready, data_samples_clean, flat_list_dups, data_samples | |