data_text_search / search_funcs /helper_functions.py
Sean-Case
Fixed data input for semantic search. Allowed for docs to be loaded in directly for semantic search. 0.2.1
3df8e40
raw
history blame
4.52 kB
import os
import re
import pandas as pd
import gradio as gr
import os
import shutil
import getpass
import gzip
import pickle
# Attempt to delete content of gradio temp folder
def get_temp_folder_path():
username = getpass.getuser()
return os.path.join('C:\\Users', username, 'AppData\\Local\\Temp\\gradio')
def empty_folder(directory_path):
if not os.path.exists(directory_path):
#print(f"The directory {directory_path} does not exist. No temporary files from previous app use found to delete.")
return
for filename in os.listdir(directory_path):
file_path = os.path.join(directory_path, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
except Exception as e:
#print(f'Failed to delete {file_path}. Reason: {e}')
print('')
def get_file_path_end(file_path):
# First, get the basename of the file (e.g., "example.txt" from "/path/to/example.txt")
basename = os.path.basename(file_path)
# Then, split the basename and its extension and return only the basename without the extension
filename_without_extension, _ = os.path.splitext(basename)
#print(filename_without_extension)
return filename_without_extension
def get_file_path_end_with_ext(file_path):
match = re.search(r'(.*[\/\\])?(.+)$', file_path)
filename_end = match.group(2) if match else ''
return filename_end
def detect_file_type(filename):
"""Detect the file type based on its extension."""
if (filename.endswith('.csv')) | (filename.endswith('.csv.gz')) | (filename.endswith('.zip')):
return 'csv'
elif filename.endswith('.xlsx'):
return 'xlsx'
elif filename.endswith('.parquet'):
return 'parquet'
elif filename.endswith('.pkl.gz'):
return 'pkl.gz'
#elif filename.endswith('.gz'):
# return 'gz'
else:
raise ValueError("Unsupported file type.")
def read_file(filename):
"""Read the file based on its detected type."""
file_type = detect_file_type(filename)
print("Loading in file")
if file_type == 'csv':
file = pd.read_csv(filename, low_memory=False).reset_index().drop(["index", "Unnamed: 0"], axis=1, errors="ignore")
elif file_type == 'xlsx':
file = pd.read_excel(filename).reset_index().drop(["index", "Unnamed: 0"], axis=1, errors="ignore")
elif file_type == 'parquet':
file = pd.read_parquet(filename).reset_index().drop(["index", "Unnamed: 0"], axis=1, errors="ignore")
elif file_type == 'pkl.gz':
with gzip.open(filename, 'rb') as file:
file = pickle.load(file)
#elif file_type == ".gz":
# with gzip.open(filename, 'rb') as file:
# file = pickle.load(file)
print("File load complete")
return file
def put_columns_in_df(in_file, in_bm25_column):
'''
When file is loaded, update the column dropdown choices and change 'clean data' dropdown option to 'no'.
'''
file_list = [string.name for string in in_file]
#print(file_list)
data_file_names = [string.lower() for string in file_list if "tokenised" not in string and "npz" not in string.lower()]
data_file_name = data_file_names[0]
new_choices = []
concat_choices = []
df = read_file(data_file_name)
if "pkl" not in data_file_name:
new_choices = list(df.columns)
else: new_choices = ["page_contents"] + list(df[0].metadata.keys()) #["Documents"]
#print(new_choices)
concat_choices.extend(new_choices)
return gr.Dropdown(choices=concat_choices), gr.Dropdown(value="No", choices = ["Yes", "No"]), gr.Dropdown(choices=concat_choices), df
def put_columns_in_join_df(in_file, in_bm25_column):
'''
When file is loaded, update the column dropdown choices and change 'clean data' dropdown option to 'no'.
'''
print("in_bm25_column")
new_choices = []
concat_choices = []
df = read_file(in_file.name)
new_choices = list(df.columns)
print(new_choices)
concat_choices.extend(new_choices)
return gr.Dropdown(choices=concat_choices)
def dummy_function(gradio_component):
"""
A dummy function that exists just so that dropdown updates work correctly.
"""
return None
def display_info(info_component):
gr.Info(info_component)