|
import os |
|
import re |
|
import pandas as pd |
|
import gradio as gr |
|
import os |
|
import shutil |
|
import getpass |
|
import gzip |
|
import pickle |
|
import numpy as np |
|
|
|
|
|
from openpyxl import Workbook |
|
from openpyxl.cell.text import InlineFont |
|
from openpyxl.cell.rich_text import TextBlock, CellRichText |
|
from openpyxl.styles import Font, Alignment |
|
|
|
|
|
def get_temp_folder_path(): |
|
username = getpass.getuser() |
|
return os.path.join('C:\\Users', username, 'AppData\\Local\\Temp\\gradio') |
|
|
|
def empty_folder(directory_path): |
|
if not os.path.exists(directory_path): |
|
|
|
return |
|
|
|
for filename in os.listdir(directory_path): |
|
file_path = os.path.join(directory_path, filename) |
|
try: |
|
if os.path.isfile(file_path) or os.path.islink(file_path): |
|
os.unlink(file_path) |
|
elif os.path.isdir(file_path): |
|
shutil.rmtree(file_path) |
|
except Exception as e: |
|
|
|
print('') |
|
|
|
def get_file_path_end(file_path): |
|
|
|
basename = os.path.basename(file_path) |
|
|
|
|
|
filename_without_extension, _ = os.path.splitext(basename) |
|
|
|
|
|
|
|
return filename_without_extension |
|
|
|
def get_file_path_end_with_ext(file_path): |
|
match = re.search(r'(.*[\/\\])?(.+)$', file_path) |
|
|
|
filename_end = match.group(2) if match else '' |
|
|
|
return filename_end |
|
|
|
def detect_file_type(filename): |
|
"""Detect the file type based on its extension.""" |
|
if (filename.endswith('.csv')) | (filename.endswith('.csv.gz')) | (filename.endswith('.zip')): |
|
return 'csv' |
|
elif filename.endswith('.xlsx'): |
|
return 'xlsx' |
|
elif filename.endswith('.parquet'): |
|
return 'parquet' |
|
elif filename.endswith('.pkl.gz'): |
|
return 'pkl.gz' |
|
|
|
|
|
else: |
|
raise ValueError("Unsupported file type.") |
|
|
|
def read_file(filename): |
|
"""Read the file based on its detected type.""" |
|
file_type = detect_file_type(filename) |
|
|
|
print("Loading in file") |
|
|
|
if file_type == 'csv': |
|
file = pd.read_csv(filename, low_memory=False).reset_index() |
|
elif file_type == 'xlsx': |
|
file = pd.read_excel(filename).reset_index() |
|
elif file_type == 'parquet': |
|
file = pd.read_parquet(filename).reset_index() |
|
elif file_type == 'pkl.gz': |
|
with gzip.open(filename, 'rb') as file: |
|
file = pickle.load(file) |
|
|
|
|
|
|
|
|
|
print("File load complete") |
|
|
|
return file |
|
|
|
def initial_data_load(in_file): |
|
''' |
|
When file is loaded, update the column dropdown choices |
|
''' |
|
new_choices = [] |
|
concat_choices = [] |
|
index_load = None |
|
embed_load = np.array([]) |
|
tokenised_load =[] |
|
out_message = "" |
|
current_source = "" |
|
df = pd.DataFrame() |
|
|
|
file_list = [string.name for string in in_file] |
|
|
|
|
|
|
|
data_file_names = [string for string in file_list if "tokenised" not in string.lower() and "npz" not in string.lower() and "search_index" not in string.lower()] |
|
print(data_file_names) |
|
|
|
if not data_file_names: |
|
out_message = "Please load in at least one csv/Excel/parquet data file." |
|
print(out_message) |
|
return gr.Dropdown(choices=concat_choices), gr.Dropdown(choices=concat_choices), pd.DataFrame(), pd.DataFrame(), index_load, out_message |
|
|
|
|
|
if "pkl" in data_file_names[0]: |
|
df = read_file(data_file_names[0]) |
|
new_choices = list(df[0].metadata.keys()) |
|
current_source = get_file_path_end_with_ext(data_file_names[0]) |
|
|
|
|
|
else: |
|
for file in data_file_names: |
|
|
|
current_source = current_source + get_file_path_end_with_ext(file) + " " |
|
|
|
df_new = read_file(file) |
|
|
|
df = pd.concat([df, df_new], ignore_index = True) |
|
|
|
new_choices = list(df.columns) |
|
|
|
concat_choices.extend(new_choices) |
|
|
|
|
|
index_file_names = [string for string in file_list if "gz" in string.lower()] |
|
|
|
if index_file_names: |
|
index_file_name = index_file_names[0] |
|
index_load = read_file(index_file_name) |
|
|
|
embeddings_file_names = [string for string in file_list if "embedding" in string.lower()] |
|
|
|
if embeddings_file_names: |
|
print("Loading embeddings from file.") |
|
embed_load = np.load(embeddings_file_names[0])['arr_0'] |
|
|
|
|
|
if "compress" in embeddings_file_names[0]: |
|
embed_load /= 100 |
|
else: |
|
embed_load = np.array([]) |
|
|
|
tokenised_file_names = [string for string in file_list if "tokenised" in string.lower()] |
|
if tokenised_file_names: |
|
tokenised_load = read_file(tokenised_file_names[0]) |
|
|
|
out_message = "Initial data check successful. Next, choose a data column to search in the drop down above, then click 'Load data'" |
|
print(out_message) |
|
|
|
return gr.Dropdown(choices=concat_choices), gr.Dropdown(choices=concat_choices), df, df, index_load, embed_load, tokenised_load, out_message, current_source |
|
|
|
def put_columns_in_join_df(in_file): |
|
''' |
|
When file is loaded, update the column dropdown choices |
|
''' |
|
new_df = pd.DataFrame() |
|
|
|
|
|
new_choices = [] |
|
concat_choices = [] |
|
|
|
|
|
new_df = read_file(in_file.name) |
|
new_choices = list(new_df.columns) |
|
|
|
|
|
|
|
concat_choices.extend(new_choices) |
|
|
|
out_message = "File load successful. Now select a column to join below." |
|
|
|
return gr.Dropdown(choices=concat_choices), new_df, out_message |
|
|
|
|
|
""" |
|
A dummy function that exists just so that dropdown updates work correctly. |
|
""" |
|
return None |
|
|
|
def display_info(info_component): |
|
gr.Info(info_component) |
|
|
|
def highlight_found_text(search_text: str, full_text: str) -> str: |
|
""" |
|
Highlights occurrences of search_text within full_text. |
|
|
|
Parameters: |
|
- search_text (str): The text to be searched for within full_text. |
|
- full_text (str): The text within which search_text occurrences will be highlighted. |
|
|
|
Returns: |
|
- str: A string with occurrences of search_text highlighted. |
|
|
|
Example: |
|
>>> highlight_found_text("world", "Hello, world! This is a test. Another world awaits.") |
|
'Hello, <mark style="color:black;">world</mark>! This is a test. Another <mark style="color:black;">world</mark> awaits.' |
|
""" |
|
|
|
def extract_text_from_input(text, i=0): |
|
if isinstance(text, str): |
|
return text |
|
elif isinstance(text, list): |
|
return text[i][0] |
|
else: |
|
return "" |
|
|
|
def extract_search_text_from_input(text): |
|
if isinstance(text, str): |
|
return text |
|
elif isinstance(text, list): |
|
return text[-1][1] |
|
else: |
|
return "" |
|
|
|
full_text = extract_text_from_input(full_text) |
|
search_text = extract_search_text_from_input(search_text) |
|
|
|
sections = search_text.split(sep = " ") |
|
|
|
found_positions = {} |
|
for x in sections: |
|
text_start_pos = 0 |
|
while text_start_pos != -1: |
|
text_start_pos = full_text.find(x, text_start_pos) |
|
if text_start_pos != -1: |
|
found_positions[text_start_pos] = text_start_pos + len(x) |
|
text_start_pos += 1 |
|
|
|
|
|
sorted_starts = sorted(found_positions.keys()) |
|
combined_positions = [] |
|
if sorted_starts: |
|
current_start, current_end = sorted_starts[0], found_positions[sorted_starts[0]] |
|
for start in sorted_starts[1:]: |
|
if start <= (current_end + 10): |
|
current_end = max(current_end, found_positions[start]) |
|
else: |
|
combined_positions.append((current_start, current_end)) |
|
current_start, current_end = start, found_positions[start] |
|
combined_positions.append((current_start, current_end)) |
|
|
|
|
|
pos_tokens = [] |
|
prev_end = 0 |
|
for start, end in combined_positions: |
|
if end-start > 1: |
|
pos_tokens.append(full_text[prev_end:start]) |
|
pos_tokens.append('<mark style="color:black;">' + full_text[start:end] + '</mark>') |
|
prev_end = end |
|
pos_tokens.append(full_text[prev_end:]) |
|
|
|
return "".join(pos_tokens), combined_positions |
|
|
|
def create_rich_text_cell_from_positions(full_text, combined_positions): |
|
|
|
red = InlineFont(color='00FF0000') |
|
rich_text_cell = CellRichText() |
|
|
|
prev_end = 0 |
|
for start, end in combined_positions: |
|
if end-start > 1: |
|
rich_text_cell.append(full_text[prev_end:start]) |
|
rich_text_cell.append(TextBlock(red, full_text[start:end])) |
|
prev_end = end |
|
rich_text_cell.append(full_text[prev_end:]) |
|
|
|
return rich_text_cell |
|
|
|
def create_highlighted_excel_wb(df, search_text, column_to_highlight): |
|
|
|
|
|
wb = Workbook() |
|
sheet = wb.active |
|
|
|
|
|
sheet.append(df.columns.tolist()) |
|
for cell in sheet[1]: |
|
cell.font = Font(bold=True) |
|
|
|
column_width = 150 |
|
relevant_column_no = (df.columns == column_to_highlight).argmax() + 1 |
|
print(relevant_column_no) |
|
sheet.column_dimensions[sheet.cell(row=1, column=relevant_column_no).column_letter].width = column_width |
|
|
|
|
|
for r_idx, row in enumerate(df.itertuples(), start=2): |
|
for c_idx, cell_value in enumerate(row[1:], start=1): |
|
sheet.cell(row=r_idx, column=c_idx, value=cell_value) |
|
if df.columns[c_idx - 1] == column_to_highlight: |
|
|
|
html_text, combined_positions = highlight_found_text(search_text, cell_value) |
|
sheet.cell(row=r_idx, column=c_idx).value = create_rich_text_cell_from_positions(cell_value, combined_positions) |
|
sheet.cell(row=r_idx, column=c_idx).alignment = Alignment(wrap_text=True) |
|
|
|
return wb |