data_text_search / search_funcs /helper_functions.py
seanpedrickcase's picture
General code improvements and refinements.
a95ef9f
raw
history blame
16.1 kB
import os
import re
import pandas as pd
import gradio as gr
import os
import shutil
import getpass
import gzip
import pickle
import numpy as np
from typing import List
# Openpyxl functions for output
from openpyxl import Workbook
from openpyxl.cell.text import InlineFont
from openpyxl.cell.rich_text import TextBlock, CellRichText
from openpyxl.styles import Font, Alignment
from search_funcs.aws_functions import bucket_name
megabyte = 1024 * 1024 # Bytes in a megabyte
file_size_mb = 500 # Size in megabytes
file_size_bytes_500mb = megabyte * file_size_mb
def get_or_create_env_var(var_name, default_value):
# Get the environment variable if it exists
value = os.environ.get(var_name)
# If it doesn't exist, set it to the default value
if value is None:
os.environ[var_name] = default_value
value = default_value
return value
# Retrieving or setting output folder
env_var_name = 'GRADIO_OUTPUT_FOLDER'
default_value = 'output/'
output_folder = get_or_create_env_var(env_var_name, default_value)
print(f'The value of {env_var_name} is {output_folder}')
def ensure_output_folder_exists(output_folder):
"""Checks if the output folder exists, creates it if not."""
folder_name = output_folder
if not os.path.exists(folder_name):
# Create the folder if it doesn't exist
os.makedirs(folder_name)
print(f"Created the output folder:", folder_name)
else:
print(f"The output folder already exists:", folder_name)
def get_connection_params(request: gr.Request):
if request:
#request_data = request.json() # Parse JSON body
#print("All request data:", request_data)
#context_value = request_data.get('context')
#if 'context' in request_data:
# print("Request context dictionary:", request_data['context'])
#print("Request headers dictionary:", request.headers)
#print("All host elements", request.client)
#print("IP address:", request.client.host)
#print("Query parameters:", dict(request.query_params))
# To get the underlying FastAPI items you would need to use await and some fancy @ stuff for a live query: https://fastapi.tiangolo.com/vi/reference/request/
#print("Request dictionary to object:", request.request.body())
print("Session hash:", request.session_hash)
if 'x-cognito-id' in request.headers:
out_session_hash = request.headers['x-cognito-id']
base_folder = "user-files/"
print("Cognito ID found:", out_session_hash)
else:
out_session_hash = request.session_hash
base_folder = "temp-files/"
print("Cognito ID not found. Using session hash as save folder.")
output_folder = base_folder + out_session_hash + "/"
if bucket_name:
print("S3 output folder is: " + "s3://" + bucket_name + "/" + output_folder)
return out_session_hash, output_folder
else:
print("No session parameters found.")
return "", ""
# Attempt to delete content of gradio temp folder
def get_temp_folder_path():
username = getpass.getuser()
return os.path.join('C:\\Users', username, 'AppData\\Local\\Temp\\gradio')
def empty_folder(directory_path):
if not os.path.exists(directory_path):
#print(f"The directory {directory_path} does not exist. No temporary files from previous app use found to delete.")
return
for filename in os.listdir(directory_path):
file_path = os.path.join(directory_path, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
except Exception as e:
#print(f'Failed to delete {file_path}. Reason: {e}')
print('')
def get_file_path_end(file_path):
# First, get the basename of the file (e.g., "example.txt" from "/path/to/example.txt")
basename = os.path.basename(file_path)
# Then, split the basename and its extension and return only the basename without the extension
filename_without_extension, _ = os.path.splitext(basename)
#print(filename_without_extension)
return filename_without_extension
def get_file_path_end_with_ext(file_path):
match = re.search(r'(.*[\/\\])?(.+)$', file_path)
filename_end = match.group(2) if match else ''
return filename_end
def ensure_output_folder_exists(output_folder):
"""Checks if the output folder exists, creates it if not."""
folder_name = output_folder
if not os.path.exists(folder_name):
# Create the folder if it doesn't exist
os.makedirs(folder_name)
print(f"Created the output folder:", folder_name)
else:
print(f"The output folder already exists:", folder_name)
def detect_file_type(filename):
"""Detect the file type based on its extension."""
if (filename.endswith('.csv')) | (filename.endswith('.csv.gz')) | (filename.endswith('.zip')):
return 'csv'
elif filename.endswith('.xlsx'):
return 'xlsx'
elif filename.endswith('.parquet'):
return 'parquet'
elif filename.endswith('.pkl.gz'):
return 'pkl.gz'
#elif filename.endswith('.gz'):
# return 'gz'
else:
raise ValueError("Unsupported file type.")
def read_file(filename):
"""Read the file based on its detected type."""
file_type = detect_file_type(filename)
print("Loading in file")
if file_type == 'csv':
file = pd.read_csv(filename, low_memory=False).reset_index()#.drop(["index", "Unnamed: 0"], axis=1, errors="ignore")
elif file_type == 'xlsx':
file = pd.read_excel(filename).reset_index()#.drop(["index", "Unnamed: 0"], axis=1, errors="ignore")
elif file_type == 'parquet':
file = pd.read_parquet(filename).reset_index()#.drop(["index", "Unnamed: 0"], axis=1, errors="ignore")
elif file_type == 'pkl.gz':
with gzip.open(filename, 'rb') as file:
file = pickle.load(file)
#elif file_type == ".gz":
# with gzip.open(filename, 'rb') as file:
# file = pickle.load(file)
print("File load complete")
return file
def initial_data_load(in_file:List[str]):
'''
When file is loaded, update the column dropdown choices and relevant state variables
'''
new_choices = []
concat_choices = []
index_load = None
embed_load = np.array([])
tokenised_load = []
out_message = ""
current_source = ""
df = pd.DataFrame()
file_list = [string.name for string in in_file]
#print(file_list)
data_file_names = [string for string in file_list if "tokenised" not in string.lower() and "npz" not in string.lower() and "search_index" not in string.lower()]
print(data_file_names)
if not data_file_names:
out_message = "Please load in at least one csv/Excel/parquet data file."
print(out_message)
return gr.Dropdown(choices=concat_choices), gr.Dropdown(choices=concat_choices), pd.DataFrame(), pd.DataFrame(), index_load, embed_load, tokenised_load, out_message, None
# This if you have loaded in a documents object for the semantic search
if "pkl" in data_file_names[0]:
df = read_file(data_file_names[0])
new_choices = list(df[0].metadata.keys()) #["Documents"] #["page_contents"] +
current_source = get_file_path_end_with_ext(data_file_names[0])
# This if you have loaded in a csv/parquets/xlsx
else:
for file in data_file_names:
current_source = current_source + get_file_path_end_with_ext(file) + " "
# Get the size of the file
print("Checking file size")
file_size = os.path.getsize(file)
if file_size > file_size_bytes_500mb:
out_message = "Data file greater than 500mb in size. Please use smaller sizes."
print(out_message)
return gr.Dropdown(choices=concat_choices), gr.Dropdown(choices=concat_choices), pd.DataFrame(), pd.DataFrame(), index_load, embed_load, tokenised_load, out_message, None
df_new = read_file(file)
df = pd.concat([df, df_new], ignore_index = True)
new_choices = list(df.columns)
concat_choices.extend(new_choices)
# Check if there is a search index file already
index_file_names = [string for string in file_list if "gz" in string.lower()]
if index_file_names:
index_file_name = index_file_names[0]
index_load = read_file(index_file_name)
embeddings_file_names = [string for string in file_list if "embedding" in string.lower()]
if embeddings_file_names:
print("Loading embeddings from file.")
embed_load = np.load(embeddings_file_names[0])['arr_0']
# If embedding files have 'super_compress' in the title, they have been multiplied by 100 before save
if "compress" in embeddings_file_names[0]:
embed_load /= 100
else:
embed_load = np.array([])
tokenised_file_names = [string for string in file_list if "tokenised" in string.lower()]
if tokenised_file_names:
tokenised_load = read_file(tokenised_file_names[0])
out_message = "Initial data check successful. Next, choose a data column to search in the drop down above, then click 'Load data'"
print(out_message)
return gr.Dropdown(choices=concat_choices), gr.Dropdown(choices=concat_choices), df, df, index_load, embed_load, tokenised_load, out_message, current_source
def put_columns_in_join_df(in_file:str):
'''
When file is loaded, update the column dropdown choices
'''
new_df = pd.DataFrame()
#print("in_bm25_column")
new_choices = []
concat_choices = []
new_df = read_file(in_file.name)
new_choices = list(new_df.columns)
#print(new_choices)
concat_choices.extend(new_choices)
out_message = "File load successful. Now select a column to join below."
return gr.Dropdown(choices=concat_choices), new_df, out_message
def display_info(info_component):
gr.Info(info_component)
def highlight_found_text(search_text: str, full_text: str) -> str:
"""
Highlights occurrences of search_text within full_text.
Parameters:
- search_text (str): The text to be searched for within full_text.
- full_text (str): The text within which search_text occurrences will be highlighted.
Returns:
- str: A string with occurrences of search_text highlighted.
Example:
>>> highlight_found_text("world", "Hello, world! This is a test. Another world awaits.")
'Hello, <mark style="color:black;">world</mark>! This is a test. Another <mark style="color:black;">world</mark> awaits.'
"""
def extract_text_from_input(text, i=0):
if isinstance(text, str):
return text
elif isinstance(text, list):
return text[i][0]
else:
return ""
def extract_search_text_from_input(text):
if isinstance(text, str):
return text
elif isinstance(text, list):
return text[-1][1]
else:
return ""
full_text = extract_text_from_input(full_text)
search_text = extract_search_text_from_input(search_text)
sections = search_text.split(sep = " ")
found_positions = {}
for x in sections:
text_start_pos = 0
while text_start_pos != -1:
text_start_pos = full_text.find(x, text_start_pos)
if text_start_pos != -1:
found_positions[text_start_pos] = text_start_pos + len(x)
text_start_pos += 1
# Combine overlapping or adjacent positions
sorted_starts = sorted(found_positions.keys())
combined_positions = []
if sorted_starts:
current_start, current_end = sorted_starts[0], found_positions[sorted_starts[0]]
for start in sorted_starts[1:]:
if start <= (current_end + 10):
current_end = max(current_end, found_positions[start])
else:
combined_positions.append((current_start, current_end))
current_start, current_end = start, found_positions[start]
combined_positions.append((current_start, current_end))
# Construct pos_tokens
pos_tokens = []
prev_end = 0
for start, end in combined_positions:
if end-start > 1: # Only combine if there is a significant amount of matched text. Avoids picking up single words like 'and' etc.
pos_tokens.append(full_text[prev_end:start])
pos_tokens.append('<mark style="color:black;">' + full_text[start:end] + '</mark>')
prev_end = end
pos_tokens.append(full_text[prev_end:])
return "".join(pos_tokens), combined_positions
def create_rich_text_cell_from_positions(full_text: str, combined_positions: list[tuple[int, int]]) -> CellRichText:
"""
Create a rich text cell with highlighted positions.
This function takes the full text and a list of combined positions, and creates a rich text cell
with the specified positions highlighted in red.
Parameters:
full_text (str): The full text to be processed.
combined_positions (list[tuple[int, int]]): A list of tuples representing the start and end positions to be highlighted.
Returns:
CellRichText: The created rich text cell with highlighted positions.
"""
# Construct pos_tokens
red = InlineFont(color='00FF0000')
rich_text_cell = CellRichText()
prev_end = 0
for start, end in combined_positions:
if end-start > 1: # Only combine if there is a significant amount of matched text. Avoids picking up single words like 'and' etc.
rich_text_cell.append(full_text[prev_end:start])
rich_text_cell.append(TextBlock(red, full_text[start:end]))
prev_end = end
rich_text_cell.append(full_text[prev_end:])
return rich_text_cell
def create_highlighted_excel_wb(df: pd.DataFrame, search_text: str, column_to_highlight: str) -> Workbook:
"""
Create a new Excel workbook with highlighted search text.
This function takes a DataFrame, a search text, and a column name to highlight. It creates a new Excel workbook,
highlights the occurrences of the search text in the specified column, and returns the workbook.
Parameters:
df (pd.DataFrame): The DataFrame containing the data to be written to the Excel workbook.
search_text (str): The text to search for and highlight in the specified column.
column_to_highlight (str): The name of the column in which to highlight the search text.
Returns:
Workbook: The created Excel workbook with highlighted search text.
"""
# Create a new Excel workbook
wb = Workbook()
sheet = wb.active
# Insert headers into the worksheet, make bold
sheet.append(df.columns.tolist())
for cell in sheet[1]:
cell.font = Font(bold=True)
column_width = 150 # Adjust as needed
relevant_column_no = (df.columns == column_to_highlight).argmax() + 1
print(relevant_column_no)
sheet.column_dimensions[sheet.cell(row=1, column=relevant_column_no).column_letter].width = column_width
# Find substrings in cells and highlight
for r_idx, row in enumerate(df.itertuples(), start=2):
for c_idx, cell_value in enumerate(row[1:], start=1):
sheet.cell(row=r_idx, column=c_idx, value=cell_value)
if df.columns[c_idx - 1] == column_to_highlight:
html_text, combined_positions = highlight_found_text(search_text, cell_value)
sheet.cell(row=r_idx, column=c_idx).value = create_rich_text_cell_from_positions(cell_value, combined_positions)
sheet.cell(row=r_idx, column=c_idx).alignment = Alignment(wrap_text=True)
return wb