|
import os |
|
import time |
|
import pandas as pd |
|
from typing import Type |
|
import gradio as gr |
|
import numpy as np |
|
from datetime import datetime |
|
from search_funcs.helper_functions import get_file_path_end, create_highlighted_excel_wb, ensure_output_folder_exists, output_folder |
|
from torch import cuda, backends |
|
from sentence_transformers import SentenceTransformer |
|
PandasDataFrame = Type[pd.DataFrame] |
|
|
|
today_rev = datetime.now().strftime("%Y%m%d") |
|
|
|
|
|
print("Is CUDA enabled? ", cuda.is_available()) |
|
print("Is a CUDA device available on this computer?", backends.cudnn.enabled) |
|
if cuda.is_available(): |
|
torch_device = "cuda" |
|
os.system("nvidia-smi") |
|
|
|
else: |
|
torch_device = "cpu" |
|
|
|
print("Device used is: ", torch_device) |
|
|
|
|
|
embeddings_name = "BAAI/bge-small-en-v1.5" |
|
|
|
|
|
local_embeddings_locations = [ |
|
"model/bge/", |
|
"/model/bge/", |
|
"/home/user/app/model/bge/" |
|
] |
|
|
|
|
|
for location in local_embeddings_locations: |
|
try: |
|
embeddings_model = SentenceTransformer(location) |
|
print(f"Found local model installation at: {location}") |
|
break |
|
except Exception as e: |
|
print(f"Failed to load model from {location}: {e}") |
|
continue |
|
else: |
|
|
|
embeddings_model = SentenceTransformer(embeddings_name) |
|
print("Could not find local model installation. Downloading from Huggingface") |
|
|
|
|
|
def docs_to_bge_embed_np_array( |
|
docs_out: list, |
|
in_file: list, |
|
embeddings_state: np.ndarray, |
|
output_file_state: str, |
|
clean: str, |
|
return_intermediate_files: str = "No", |
|
embeddings_super_compress: str = "No", |
|
embeddings_model: SentenceTransformer = embeddings_model, |
|
progress: gr.Progress = gr.Progress(track_tqdm=True) |
|
) -> tuple: |
|
""" |
|
Process documents to create BGE embeddings and save them as a numpy array. |
|
|
|
Parameters: |
|
- docs_out (list): List of documents to be embedded. |
|
- in_file (list): List of input files. |
|
- embeddings_state (np.ndarray): Current state of embeddings. |
|
- output_file_state (str): State of the output file. |
|
- clean (str): Indicates if the data should be cleaned. |
|
- return_intermediate_files (str, optional): Whether to return intermediate files. Default is "No". |
|
- embeddings_super_compress (str, optional): Whether to super compress the embeddings. Default is "No". |
|
- embeddings_model (SentenceTransformer, optional): The embeddings model to use. Default is embeddings_model. |
|
- progress (gr.Progress, optional): Progress tracker for the function. Default is gr.Progress(track_tqdm=True). |
|
|
|
Returns: |
|
- tuple: A tuple containing the output message, embeddings, and output file state. |
|
""" |
|
|
|
|
|
ensure_output_folder_exists(output_folder) |
|
|
|
if not in_file: |
|
out_message = "No input file found. Please load in at least one file." |
|
print(out_message) |
|
return out_message, None, None, output_file_state |
|
|
|
progress(0.6, desc = "Loading/creating embeddings") |
|
|
|
print(f"> Total split documents: {len(docs_out)}") |
|
|
|
page_contents = [doc.page_content for doc in docs_out] |
|
|
|
|
|
file_list = [string.name for string in in_file] |
|
|
|
embeddings_file_names = [string for string in file_list if "embedding" in string.lower()] |
|
data_file_names = [string for string in file_list if "tokenised" not in string.lower() and "npz" not in string.lower()] |
|
data_file_name = data_file_names[0] |
|
data_file_name_no_ext = get_file_path_end(data_file_name) |
|
|
|
out_message = "Document processing complete. Ready to search." |
|
|
|
|
|
if embeddings_state.size == 0: |
|
tic = time.perf_counter() |
|
print("Starting to embed documents.") |
|
|
|
embeddings_out = embeddings_model.encode(sentences=page_contents, show_progress_bar = True, batch_size = 32, normalize_embeddings=True) |
|
|
|
toc = time.perf_counter() |
|
time_out = f"The embedding took {toc - tic:0.1f} seconds" |
|
print(time_out) |
|
|
|
|
|
if return_intermediate_files == "Yes": |
|
if clean == "Yes": data_file_name_no_ext = data_file_name_no_ext + "_cleaned" |
|
else: data_file_name_no_ext = data_file_name_no_ext |
|
|
|
progress(0.9, desc = "Saving embeddings to file") |
|
if embeddings_super_compress == "No": |
|
semantic_search_file_name = output_folder + data_file_name_no_ext + '_bge_embeddings.npz' |
|
np.savez_compressed(semantic_search_file_name, embeddings_out) |
|
else: |
|
semantic_search_file_name = output_folder + data_file_name_no_ext + '_bge_embedding_compress.npz' |
|
embeddings_out_round = np.round(embeddings_out, 3) |
|
embeddings_out_round *= 100 |
|
np.savez_compressed(semantic_search_file_name, embeddings_out_round) |
|
|
|
output_file_state.append(semantic_search_file_name) |
|
|
|
return out_message, embeddings_out, output_file_state, output_file_state |
|
|
|
return out_message, embeddings_out, output_file_state, output_file_state |
|
else: |
|
|
|
embeddings_out = embeddings_state |
|
|
|
print(out_message) |
|
|
|
return out_message, embeddings_out, output_file_state, output_file_state |
|
|
|
def process_data_from_scores_df( |
|
df_docs: pd.DataFrame, |
|
in_join_file: pd.DataFrame, |
|
vec_score_cut_off: float, |
|
in_join_column: str, |
|
search_df_join_column: str, |
|
progress: gr.Progress = gr.Progress(track_tqdm=True) |
|
) -> pd.DataFrame: |
|
""" |
|
Process the data from the scores DataFrame by filtering based on score cutoff and document length, |
|
and optionally joining with an additional file. |
|
|
|
Parameters |
|
---------- |
|
df_docs : pd.DataFrame |
|
DataFrame containing document scores and metadata. |
|
in_join_file : pd.DataFrame |
|
DataFrame to join with the results based on specified columns. |
|
vec_score_cut_off : float |
|
Cutoff value for the vector similarity score. |
|
in_join_column : str |
|
Column name in the join file to join on. |
|
search_df_join_column : str |
|
Column name in the search DataFrame to join on. |
|
progress : gr.Progress, optional |
|
Progress tracker for the function (default is gr.Progress(track_tqdm=True)). |
|
|
|
Returns |
|
------- |
|
pd.DataFrame |
|
Processed DataFrame with filtered and joined data. |
|
""" |
|
|
|
docs_scores = df_docs["distances"] |
|
|
|
|
|
score_more_limit = df_docs.loc[docs_scores > vec_score_cut_off, :] |
|
|
|
if score_more_limit.empty: |
|
return pd.DataFrame() |
|
|
|
|
|
docs_len = score_more_limit["documents"].str.len() >= 100 |
|
|
|
length_more_limit = score_more_limit.loc[docs_len == True, :] |
|
|
|
if length_more_limit.empty: |
|
return pd.DataFrame() |
|
|
|
length_more_limit['ids'] = length_more_limit['ids'].astype(int) |
|
|
|
|
|
|
|
df_metadata_expanded = length_more_limit['metadatas'].apply(pd.Series) |
|
|
|
|
|
results_df_out = pd.concat([length_more_limit.drop('metadatas', axis=1), df_metadata_expanded], axis=1) |
|
|
|
results_df_out = results_df_out.rename(columns={"documents":"search_text"}) |
|
|
|
results_df_out = results_df_out.drop(["page_section", "row", "source", "id"], axis=1, errors="ignore") |
|
results_df_out['distances'] = round(results_df_out['distances'].astype(float), 3) |
|
|
|
|
|
|
|
if not in_join_file.empty: |
|
progress(0.5, desc = "Joining on additional data file") |
|
join_df = in_join_file |
|
|
|
join_df[in_join_column] = join_df[in_join_column].astype(str).str.replace("\.0$","", regex=True) |
|
|
|
|
|
join_df = join_df.drop_duplicates(in_join_column) |
|
|
|
results_df_out[search_df_join_column] = results_df_out[search_df_join_column].astype(str).str.replace("\.0$","", regex=True) |
|
|
|
results_df_out = results_df_out.merge(join_df,left_on=search_df_join_column, right_on=in_join_column, how="left", suffixes=('','_y')) |
|
|
|
return results_df_out |
|
|
|
def bge_semantic_search( |
|
query_str: str, |
|
embeddings: np.ndarray, |
|
documents: list, |
|
k_val: int, |
|
vec_score_cut_off: float, |
|
in_join_file: pd.DataFrame, |
|
in_join_column: str = None, |
|
search_df_join_column: str = None, |
|
device: str = torch_device, |
|
embeddings_model: SentenceTransformer = embeddings_model, |
|
progress: gr.Progress = gr.Progress(track_tqdm=True) |
|
) -> pd.DataFrame: |
|
""" |
|
Perform a semantic search using the BGE model. |
|
|
|
Parameters: |
|
- query_str (str): The query string to search for. |
|
- embeddings (np.ndarray): The embeddings to search within. |
|
- documents (list): The list of documents to search. |
|
- k_val (int): The number of top results to return. |
|
- vec_score_cut_off (float): The score cutoff for filtering results. |
|
- in_join_file (pd.DataFrame): The DataFrame to join with the search results. |
|
- in_join_column (str, optional): The column name in the join DataFrame to join on. Default is None. |
|
- search_df_join_column (str, optional): The column name in the search DataFrame to join on. Default is None. |
|
- device (str, optional): The device to run the model on. Default is torch_device. |
|
- embeddings_model (SentenceTransformer, optional): The embeddings model to use. Default is embeddings_model. |
|
- progress (gr.Progress, optional): Progress tracker for the function. Default is gr.Progress(track_tqdm=True). |
|
|
|
Returns: |
|
- pd.DataFrame: The DataFrame containing the search results. |
|
""" |
|
|
|
progress(0, desc = "Conducting semantic search") |
|
|
|
ensure_output_folder_exists(output_folder) |
|
|
|
print("Searching") |
|
|
|
|
|
embeddings_model = embeddings_model.to(device) |
|
|
|
|
|
query = embeddings_model.encode(query_str, normalize_embeddings=True) |
|
|
|
|
|
cosine_similarities = query @ embeddings.T |
|
|
|
|
|
cosine_similarities = cosine_similarities.flatten() |
|
|
|
|
|
cosine_similarities_series = pd.Series(cosine_similarities) |
|
|
|
|
|
page_contents = [doc.page_content for doc in documents] |
|
page_meta = [doc.metadata for doc in documents] |
|
ids_range = range(0,len(page_contents)) |
|
ids = [str(element) for element in ids_range] |
|
|
|
df_documents = pd.DataFrame(data={"ids": ids, |
|
"documents": page_contents, |
|
"metadatas":page_meta, |
|
"distances":cosine_similarities_series}).sort_values("distances", ascending=False).iloc[0:k_val,:] |
|
|
|
|
|
results_df_out = process_data_from_scores_df(df_documents, in_join_file, vec_score_cut_off, in_join_column, search_df_join_column) |
|
|
|
print("Search complete") |
|
|
|
|
|
if results_df_out.empty: |
|
return 'No result found!', None |
|
|
|
query_str_file = query_str.replace(" ", "_") |
|
|
|
results_df_name = output_folder + "semantic_search_result_" + today_rev + "_" + query_str_file + ".xlsx" |
|
|
|
print("Saving search output to file") |
|
progress(0.7, desc = "Saving search output to file") |
|
|
|
|
|
results_df_out_wb = create_highlighted_excel_wb(results_df_out, query_str, "search_text") |
|
results_df_out_wb.save(results_df_name) |
|
|
|
|
|
results_first_text = results_df_out.iloc[0, 1] |
|
|
|
print("Returning results") |
|
|
|
return results_first_text, results_df_name |