data_text_search / search_funcs /semantic_functions.py
seanpedrickcase's picture
General code improvements and refinements.
a95ef9f
raw
history blame
12.5 kB
import os
import time
import pandas as pd
from typing import Type
import gradio as gr
import numpy as np
from datetime import datetime
from search_funcs.helper_functions import get_file_path_end, create_highlighted_excel_wb, ensure_output_folder_exists, output_folder
from torch import cuda, backends
from sentence_transformers import SentenceTransformer
PandasDataFrame = Type[pd.DataFrame]
today_rev = datetime.now().strftime("%Y%m%d")
# Check for torch cuda
print("Is CUDA enabled? ", cuda.is_available())
print("Is a CUDA device available on this computer?", backends.cudnn.enabled)
if cuda.is_available():
torch_device = "cuda"
os.system("nvidia-smi")
else:
torch_device = "cpu"
print("Device used is: ", torch_device)
# Load embeddings
embeddings_name = "BAAI/bge-small-en-v1.5"
# Define a list of possible local locations to search for the model
local_embeddings_locations = [
"model/bge/", # Potential local location
"/model/bge/", # Potential location in Docker container
"/home/user/app/model/bge/" # This is inside a Docker container
]
# Attempt to load the model from each local location
for location in local_embeddings_locations:
try:
embeddings_model = SentenceTransformer(location)
print(f"Found local model installation at: {location}")
break # Exit the loop if the model is found
except Exception as e:
print(f"Failed to load model from {location}: {e}")
continue
else:
# If the loop completes without finding the model in any local location
embeddings_model = SentenceTransformer(embeddings_name)
print("Could not find local model installation. Downloading from Huggingface")
def docs_to_bge_embed_np_array(
docs_out: list,
in_file: list,
embeddings_state: np.ndarray,
output_file_state: str,
clean: str,
return_intermediate_files: str = "No",
embeddings_super_compress: str = "No",
embeddings_model: SentenceTransformer = embeddings_model,
progress: gr.Progress = gr.Progress(track_tqdm=True)
) -> tuple:
"""
Process documents to create BGE embeddings and save them as a numpy array.
Parameters:
- docs_out (list): List of documents to be embedded.
- in_file (list): List of input files.
- embeddings_state (np.ndarray): Current state of embeddings.
- output_file_state (str): State of the output file.
- clean (str): Indicates if the data should be cleaned.
- return_intermediate_files (str, optional): Whether to return intermediate files. Default is "No".
- embeddings_super_compress (str, optional): Whether to super compress the embeddings. Default is "No".
- embeddings_model (SentenceTransformer, optional): The embeddings model to use. Default is embeddings_model.
- progress (gr.Progress, optional): Progress tracker for the function. Default is gr.Progress(track_tqdm=True).
Returns:
- tuple: A tuple containing the output message, embeddings, and output file state.
"""
ensure_output_folder_exists(output_folder)
if not in_file:
out_message = "No input file found. Please load in at least one file."
print(out_message)
return out_message, None, None, output_file_state
progress(0.6, desc = "Loading/creating embeddings")
print(f"> Total split documents: {len(docs_out)}")
page_contents = [doc.page_content for doc in docs_out]
## Load in pre-embedded file if exists
file_list = [string.name for string in in_file]
embeddings_file_names = [string for string in file_list if "embedding" in string.lower()]
data_file_names = [string for string in file_list if "tokenised" not in string.lower() and "npz" not in string.lower()]# and "gz" not in string.lower()]
data_file_name = data_file_names[0]
data_file_name_no_ext = get_file_path_end(data_file_name)
out_message = "Document processing complete. Ready to search."
if embeddings_state.size == 0:
tic = time.perf_counter()
print("Starting to embed documents.")
embeddings_out = embeddings_model.encode(sentences=page_contents, show_progress_bar = True, batch_size = 32, normalize_embeddings=True) # For BGE
toc = time.perf_counter()
time_out = f"The embedding took {toc - tic:0.1f} seconds"
print(time_out)
# If you want to save your files for next time
if return_intermediate_files == "Yes":
if clean == "Yes": data_file_name_no_ext = data_file_name_no_ext + "_cleaned"
else: data_file_name_no_ext = data_file_name_no_ext
progress(0.9, desc = "Saving embeddings to file")
if embeddings_super_compress == "No":
semantic_search_file_name = output_folder + data_file_name_no_ext + '_bge_embeddings.npz'
np.savez_compressed(semantic_search_file_name, embeddings_out)
else:
semantic_search_file_name = output_folder + data_file_name_no_ext + '_bge_embedding_compress.npz'
embeddings_out_round = np.round(embeddings_out, 3)
embeddings_out_round *= 100 # Rounding not currently used
np.savez_compressed(semantic_search_file_name, embeddings_out_round)
output_file_state.append(semantic_search_file_name)
return out_message, embeddings_out, output_file_state, output_file_state
return out_message, embeddings_out, output_file_state, output_file_state
else:
# Just return existing embeddings if already exist
embeddings_out = embeddings_state
print(out_message)
return out_message, embeddings_out, output_file_state, output_file_state
def process_data_from_scores_df(
df_docs: pd.DataFrame,
in_join_file: pd.DataFrame,
vec_score_cut_off: float,
in_join_column: str,
search_df_join_column: str,
progress: gr.Progress = gr.Progress(track_tqdm=True)
) -> pd.DataFrame:
"""
Process the data from the scores DataFrame by filtering based on score cutoff and document length,
and optionally joining with an additional file.
Parameters
----------
df_docs : pd.DataFrame
DataFrame containing document scores and metadata.
in_join_file : pd.DataFrame
DataFrame to join with the results based on specified columns.
vec_score_cut_off : float
Cutoff value for the vector similarity score.
in_join_column : str
Column name in the join file to join on.
search_df_join_column : str
Column name in the search DataFrame to join on.
progress : gr.Progress, optional
Progress tracker for the function (default is gr.Progress(track_tqdm=True)).
Returns
-------
pd.DataFrame
Processed DataFrame with filtered and joined data.
"""
docs_scores = df_docs["distances"] #.astype(float)
# Only keep sources that are sufficiently relevant (i.e. similarity search score below threshold below)
score_more_limit = df_docs.loc[docs_scores > vec_score_cut_off, :]
if score_more_limit.empty:
return pd.DataFrame()
# Only keep sources that are at least 100 characters long
docs_len = score_more_limit["documents"].str.len() >= 100
length_more_limit = score_more_limit.loc[docs_len == True, :] #pd.Series(docs_len) >= 100
if length_more_limit.empty:
return pd.DataFrame()
length_more_limit['ids'] = length_more_limit['ids'].astype(int)
# Explode the 'metadatas' dictionary into separate columns
df_metadata_expanded = length_more_limit['metadatas'].apply(pd.Series)
# Concatenate the original DataFrame with the expanded metadata DataFrame
results_df_out = pd.concat([length_more_limit.drop('metadatas', axis=1), df_metadata_expanded], axis=1)
results_df_out = results_df_out.rename(columns={"documents":"search_text"})
results_df_out = results_df_out.drop(["page_section", "row", "source", "id"], axis=1, errors="ignore")
results_df_out['distances'] = round(results_df_out['distances'].astype(float), 3)
# Join on additional files
if not in_join_file.empty:
progress(0.5, desc = "Joining on additional data file")
join_df = in_join_file
join_df[in_join_column] = join_df[in_join_column].astype(str).str.replace("\.0$","", regex=True)
# Duplicates dropped so as not to expand out dataframe
join_df = join_df.drop_duplicates(in_join_column)
results_df_out[search_df_join_column] = results_df_out[search_df_join_column].astype(str).str.replace("\.0$","", regex=True)
results_df_out = results_df_out.merge(join_df,left_on=search_df_join_column, right_on=in_join_column, how="left", suffixes=('','_y'))#.drop(in_join_column, axis=1)
return results_df_out
def bge_semantic_search(
query_str: str,
embeddings: np.ndarray,
documents: list,
k_val: int,
vec_score_cut_off: float,
in_join_file: pd.DataFrame,
in_join_column: str = None,
search_df_join_column: str = None,
device: str = torch_device,
embeddings_model: SentenceTransformer = embeddings_model,
progress: gr.Progress = gr.Progress(track_tqdm=True)
) -> pd.DataFrame:
"""
Perform a semantic search using the BGE model.
Parameters:
- query_str (str): The query string to search for.
- embeddings (np.ndarray): The embeddings to search within.
- documents (list): The list of documents to search.
- k_val (int): The number of top results to return.
- vec_score_cut_off (float): The score cutoff for filtering results.
- in_join_file (pd.DataFrame): The DataFrame to join with the search results.
- in_join_column (str, optional): The column name in the join DataFrame to join on. Default is None.
- search_df_join_column (str, optional): The column name in the search DataFrame to join on. Default is None.
- device (str, optional): The device to run the model on. Default is torch_device.
- embeddings_model (SentenceTransformer, optional): The embeddings model to use. Default is embeddings_model.
- progress (gr.Progress, optional): Progress tracker for the function. Default is gr.Progress(track_tqdm=True).
Returns:
- pd.DataFrame: The DataFrame containing the search results.
"""
progress(0, desc = "Conducting semantic search")
ensure_output_folder_exists(output_folder)
print("Searching")
# Load the sentence transformer model and move it to GPU
embeddings_model = embeddings_model.to(device)
# Encode the query using the sentence transformer and convert to a PyTorch tensor
query = embeddings_model.encode(query_str, normalize_embeddings=True)
# Sentence transformers method, not used:
cosine_similarities = query @ embeddings.T
# Flatten the tensor to a 1D array
cosine_similarities = cosine_similarities.flatten()
# Create a Pandas Series
cosine_similarities_series = pd.Series(cosine_similarities)
# Pull out relevent info from documents
page_contents = [doc.page_content for doc in documents]
page_meta = [doc.metadata for doc in documents]
ids_range = range(0,len(page_contents))
ids = [str(element) for element in ids_range]
df_documents = pd.DataFrame(data={"ids": ids,
"documents": page_contents,
"metadatas":page_meta,
"distances":cosine_similarities_series}).sort_values("distances", ascending=False).iloc[0:k_val,:]
results_df_out = process_data_from_scores_df(df_documents, in_join_file, vec_score_cut_off, in_join_column, search_df_join_column)
print("Search complete")
# If nothing found, return error message
if results_df_out.empty:
return 'No result found!', None
query_str_file = query_str.replace(" ", "_")
results_df_name = output_folder + "semantic_search_result_" + today_rev + "_" + query_str_file + ".xlsx"
print("Saving search output to file")
progress(0.7, desc = "Saving search output to file")
# Highlight found text and save to file
results_df_out_wb = create_highlighted_excel_wb(results_df_out, query_str, "search_text")
results_df_out_wb.save(results_df_name)
#results_df_out.to_excel(results_df_name, index= None)
results_first_text = results_df_out.iloc[0, 1]
print("Returning results")
return results_first_text, results_df_name