|
import nltk |
|
from typing import TypeVar |
|
nltk.download('names') |
|
nltk.download('stopwords') |
|
nltk.download('wordnet') |
|
nltk.download('punkt') |
|
|
|
from search_funcs.fast_bm25 import BM25 |
|
from search_funcs.clean_funcs import initial_clean, get_lemma_tokens |
|
from nltk import word_tokenize |
|
|
|
|
|
|
|
|
|
PandasDataFrame = TypeVar('pd.core.frame.DataFrame') |
|
|
|
import gradio as gr |
|
import pandas as pd |
|
import numpy as np |
|
import os |
|
import time |
|
from chromadb.config import Settings |
|
|
|
from transformers import AutoModel |
|
|
|
|
|
from spacy.cli import download |
|
import spacy |
|
spacy.prefer_gpu() |
|
|
|
|
|
try: |
|
nlp = spacy.load("en_core_web_sm") |
|
except: |
|
download("en_core_web_sm") |
|
nlp = spacy.load("en_core_web_sm") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import search_funcs.ingest as ing |
|
|
|
|
|
|
|
import chromadb |
|
|
|
|
|
|
|
from torch import cuda, backends, tensor, mm |
|
|
|
|
|
print(cuda.is_available()) |
|
print(backends.cudnn.enabled) |
|
if cuda.is_available(): |
|
torch_device = "cuda" |
|
os.system("nvidia-smi") |
|
|
|
else: |
|
torch_device = "cpu" |
|
|
|
|
|
chromadb_file = "chroma.sqlite3" |
|
|
|
if os.path.isfile(chromadb_file): |
|
os.remove(chromadb_file) |
|
|
|
|
|
def load_embeddings(embeddings_name = "jinaai/jina-embeddings-v2-small-en"): |
|
''' |
|
Load embeddings model and create a global variable based on it. |
|
''' |
|
|
|
|
|
|
|
|
|
embeddings_func = AutoModel.from_pretrained(embeddings_name, trust_remote_code=True, device_map="auto") |
|
|
|
global embeddings |
|
|
|
embeddings = embeddings_func |
|
|
|
return embeddings |
|
|
|
|
|
embeddings_name = "jinaai/jina-embeddings-v2-small-en" |
|
embeddings_model = AutoModel.from_pretrained(embeddings_name, trust_remote_code=True, device_map="auto") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tokenizer = nlp.tokenizer |
|
|
|
embeddings = embeddings_model |
|
|
|
|
|
def prepare_input_data(in_file, text_column, clean="No", progress=gr.Progress()): |
|
|
|
file_list = [string.name for string in in_file] |
|
|
|
print(file_list) |
|
|
|
data_file_names = [string for string in file_list if "tokenised" not in string] |
|
|
|
df = read_file(data_file_names[0]) |
|
|
|
|
|
tokenised_df = pd.DataFrame() |
|
|
|
tokenised_file_names = [string for string in file_list if "tokenised" in string] |
|
|
|
if tokenised_file_names: |
|
tokenised_df = read_file(tokenised_file_names[0]) |
|
print("Tokenised df is: ", tokenised_df.head()) |
|
|
|
|
|
df_list = list(df[text_column].astype(str).str.lower()) |
|
|
|
|
|
import math |
|
|
|
def get_total_batches(my_list, batch_size): |
|
return math.ceil(len(my_list) / batch_size) |
|
|
|
from itertools import islice |
|
|
|
def batch(iterable, batch_size): |
|
iterator = iter(iterable) |
|
for first in iterator: |
|
yield [first] + list(islice(iterator, batch_size - 1)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
batch_size = 256 |
|
|
|
tic = time.perf_counter() |
|
|
|
if clean == "Yes": |
|
df_list_clean = initial_clean(df_list) |
|
|
|
|
|
out_file_name = save_prepared_data(in_file, df_list_clean, df, text_column) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if not tokenised_df.empty: |
|
corpus = tokenised_df.iloc[:,0].tolist() |
|
print("Corpus is: ", corpus[0:5]) |
|
|
|
else: |
|
corpus = [] |
|
for doc in tokenizer.pipe(progress.tqdm(df_list_clean, desc = "Tokenising text", unit = "rows"), batch_size=batch_size): |
|
corpus.append([token.text for token in doc]) |
|
|
|
|
|
|
|
|
|
else: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print(df_list[0]) |
|
|
|
|
|
|
|
if not tokenised_df.empty: |
|
corpus = tokenised_df.iloc[:,0].tolist() |
|
print("Corpus is: ", corpus[0:5]) |
|
|
|
else: |
|
|
|
corpus = [] |
|
for doc in tokenizer.pipe(progress.tqdm(df_list, desc = "Tokenising text", unit = "rows"), batch_size=batch_size): |
|
|
|
corpus.append([token.text for token in doc]) |
|
|
|
|
|
out_file_name = None |
|
|
|
print(corpus[0]) |
|
|
|
|
|
toc = time.perf_counter() |
|
tokenizer_time_out = f"Tokenising the text took {toc - tic:0.1f} seconds" |
|
|
|
print("Finished data clean. " + tokenizer_time_out) |
|
|
|
if len(df_list) >= 20: |
|
message = "Data loaded" |
|
else: |
|
message = "Data loaded. Warning: dataset may be too short to get consistent search results." |
|
|
|
pd.DataFrame(data={"Corpus":corpus}).to_parquet("keyword_search_tokenised_data.parquet") |
|
|
|
return corpus, message, df, out_file_name |
|
|
|
def get_file_path_end(file_path): |
|
|
|
basename = os.path.basename(file_path) |
|
|
|
|
|
filename_without_extension, _ = os.path.splitext(basename) |
|
|
|
print(filename_without_extension) |
|
|
|
return filename_without_extension |
|
|
|
def save_prepared_data(in_file, prepared_text_list, in_df, in_bm25_column): |
|
|
|
|
|
if len(prepared_text_list) != len(in_df): |
|
raise ValueError("The length of 'prepared_text_list' and 'in_df' must match.") |
|
|
|
file_end = ".parquet" |
|
|
|
file_name = get_file_path_end(in_file.name) + "_cleaned" + file_end |
|
|
|
prepared_text_df = pd.DataFrame(data={in_bm25_column + "_cleaned":prepared_text_list}) |
|
|
|
|
|
in_df = in_df.drop(in_bm25_column, axis = 1) |
|
|
|
prepared_df = pd.concat([in_df, prepared_text_df], axis = 1) |
|
|
|
if file_end == ".csv": |
|
prepared_df.to_csv(file_name) |
|
elif file_end == ".parquet": |
|
prepared_df.to_parquet(file_name) |
|
else: file_name = None |
|
|
|
|
|
return file_name |
|
|
|
def prepare_bm25(corpus, k1=1.5, b = 0.75, alpha=-5): |
|
|
|
|
|
|
|
print("Preparing BM25 corpus") |
|
|
|
global bm25 |
|
bm25 = BM25(corpus, k1=k1, b=b, alpha=alpha) |
|
|
|
message = "Search parameters loaded." |
|
|
|
print(message) |
|
|
|
return message |
|
|
|
def convert_query_to_tokens(free_text_query, clean="No"): |
|
''' |
|
Split open text query into tokens and then lemmatise to get the core of the word |
|
''' |
|
|
|
if clean=="Yes": |
|
split_query = word_tokenize(free_text_query.lower()) |
|
out_query = get_lemma_tokens(split_query) |
|
|
|
else: |
|
split_query = word_tokenize(free_text_query.lower()) |
|
out_query = split_query |
|
|
|
return out_query |
|
|
|
def bm25_search(free_text_query, in_no_search_results, original_data, text_column, clean = "No", in_join_file = None, in_join_column = "", search_df_join_column = ""): |
|
|
|
|
|
if (clean == "Yes") | (text_column.endswith("_cleaned")): |
|
token_query = convert_query_to_tokens(free_text_query, clean="Yes") |
|
else: |
|
token_query = convert_query_to_tokens(free_text_query, clean="No") |
|
|
|
print(token_query) |
|
|
|
|
|
print("Searching") |
|
|
|
results_index, results_text, results_scores = bm25.extract_documents_and_scores(token_query, bm25.corpus, n=in_no_search_results) |
|
if not results_index: |
|
return "No search results found", None, token_query |
|
|
|
print("Search complete") |
|
|
|
|
|
joined_texts = [' '.join(inner_list) for inner_list in results_text] |
|
results_df = pd.DataFrame(data={"index": results_index, |
|
"search_text": joined_texts, |
|
"search_score_abs": results_scores}) |
|
results_df['search_score_abs'] = abs(round(results_df['search_score_abs'], 2)) |
|
results_df_out = results_df[['index', 'search_text', 'search_score_abs']].merge(original_data,left_on="index", right_index=True, how="left") |
|
|
|
|
|
if in_join_file: |
|
join_filename = in_join_file.name |
|
|
|
|
|
join_df = read_file(join_filename) |
|
join_df[in_join_column] = join_df[in_join_column].astype(str).str.replace("\.0$","", regex=True) |
|
results_df_out[search_df_join_column] = results_df_out[search_df_join_column].astype(str).str.replace("\.0$","", regex=True) |
|
|
|
|
|
join_df = join_df.drop_duplicates(in_join_column) |
|
|
|
results_df_out = results_df_out.merge(join_df,left_on=search_df_join_column, right_on=in_join_column, how="left").drop(in_join_column, axis=1) |
|
|
|
|
|
results_df_out = results_df_out.sort_values('search_score_abs', ascending=False) |
|
|
|
|
|
results_df_name = "search_result.csv" |
|
results_df_out.to_csv(results_df_name, index= None) |
|
results_first_text = results_df_out[text_column].iloc[0] |
|
|
|
print("Returning results") |
|
|
|
return results_first_text, results_df_name, token_query |
|
|
|
def detect_file_type(filename): |
|
"""Detect the file type based on its extension.""" |
|
if (filename.endswith('.csv')) | (filename.endswith('.csv.gz')) | (filename.endswith('.zip')): |
|
return 'csv' |
|
elif filename.endswith('.xlsx'): |
|
return 'xlsx' |
|
elif filename.endswith('.parquet'): |
|
return 'parquet' |
|
else: |
|
raise ValueError("Unsupported file type.") |
|
|
|
def read_file(filename): |
|
"""Read the file based on its detected type.""" |
|
file_type = detect_file_type(filename) |
|
|
|
if file_type == 'csv': |
|
return pd.read_csv(filename, low_memory=False).reset_index().drop(["index", "Unnamed: 0"], axis=1, errors="ignore") |
|
elif file_type == 'xlsx': |
|
return pd.read_excel(filename).reset_index().drop(["index", "Unnamed: 0"], axis=1, errors="ignore") |
|
elif file_type == 'parquet': |
|
return pd.read_parquet(filename).reset_index().drop(["index", "Unnamed: 0"], axis=1, errors="ignore") |
|
|
|
def put_columns_in_df(in_file, in_bm25_column): |
|
''' |
|
When file is loaded, update the column dropdown choices and change 'clean data' dropdown option to 'no'. |
|
''' |
|
|
|
file_list = [string.name for string in in_file] |
|
|
|
print(file_list) |
|
|
|
data_file_names = [string for string in file_list if "tokenised" not in string] |
|
|
|
new_choices = [] |
|
concat_choices = [] |
|
|
|
|
|
df = read_file(data_file_names[0]) |
|
new_choices = list(df.columns) |
|
|
|
|
|
|
|
concat_choices.extend(new_choices) |
|
|
|
return gr.Dropdown(choices=concat_choices), gr.Dropdown(value="No", choices = ["Yes", "No"]),\ |
|
gr.Dropdown(choices=concat_choices) |
|
|
|
def put_columns_in_join_df(in_file, in_bm25_column): |
|
''' |
|
When file is loaded, update the column dropdown choices and change 'clean data' dropdown option to 'no'. |
|
''' |
|
|
|
print("in_bm25_column") |
|
|
|
new_choices = [] |
|
concat_choices = [] |
|
|
|
|
|
df = read_file(in_file.name) |
|
new_choices = list(df.columns) |
|
|
|
print(new_choices) |
|
|
|
concat_choices.extend(new_choices) |
|
|
|
return gr.Dropdown(choices=concat_choices) |
|
|
|
def dummy_function(gradio_component): |
|
""" |
|
A dummy function that exists just so that dropdown updates work correctly. |
|
""" |
|
return None |
|
|
|
def display_info(info_component): |
|
gr.Info(info_component) |
|
|
|
def docs_to_chroma_save(docs_out, embeddings = embeddings, progress=gr.Progress()): |
|
''' |
|
Takes a Langchain document class and saves it into a Chroma sqlite file. |
|
''' |
|
|
|
print(f"> Total split documents: {len(docs_out)}") |
|
|
|
|
|
|
|
page_contents = [doc.page_content for doc in docs_out] |
|
page_meta = [doc.metadata for doc in docs_out] |
|
ids_range = range(0,len(page_contents)) |
|
ids = [str(element) for element in ids_range] |
|
|
|
tic = time.perf_counter() |
|
|
|
|
|
|
|
|
|
embeddings_list = embeddings.encode(sentences=page_contents, max_length=256, show_progress_bar = True, batch_size = 32).tolist() |
|
|
|
|
|
|
|
toc = time.perf_counter() |
|
time_out = f"The embedding took {toc - tic:0.1f} seconds" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print(time_out) |
|
|
|
chroma_tic = time.perf_counter() |
|
|
|
|
|
client = chromadb.PersistentClient(path="./last_year", settings=Settings( |
|
anonymized_telemetry=False)) |
|
|
|
try: |
|
print("Deleting existing collection.") |
|
|
|
client.delete_collection(name="my_collection") |
|
print("Creating new collection.") |
|
collection = client.create_collection(name="my_collection") |
|
except: |
|
print("Creating new collection.") |
|
collection = client.create_collection(name="my_collection") |
|
|
|
|
|
def create_batch_ranges(in_list, batch_size=40000): |
|
total_rows = len(in_list) |
|
ranges = [] |
|
|
|
for start in range(0, total_rows, batch_size): |
|
end = min(start + batch_size, total_rows) |
|
ranges.append(range(start, end)) |
|
|
|
return ranges |
|
|
|
batch_ranges = create_batch_ranges(embeddings_list) |
|
print(batch_ranges) |
|
|
|
for row_range in progress.tqdm(batch_ranges, desc = "Creating vector database", unit = "batches of 40,000 rows"): |
|
|
|
collection.add( |
|
documents = page_contents[row_range[0]:row_range[-1]], |
|
embeddings = embeddings_list[row_range[0]:row_range[-1]], |
|
metadatas = page_meta[row_range[0]:row_range[-1]], |
|
ids = ids[row_range[0]:row_range[-1]]) |
|
|
|
print(collection.count()) |
|
|
|
|
|
|
|
chroma_toc = time.perf_counter() |
|
|
|
chroma_time_out = f"Loading to Chroma db took {chroma_toc - chroma_tic:0.1f} seconds" |
|
print(chroma_time_out) |
|
|
|
out_message = "Document processing complete" |
|
|
|
return out_message, collection |
|
|
|
def docs_to_np_array(docs_out, in_file, embeddings = embeddings, progress=gr.Progress()): |
|
''' |
|
Takes a Langchain document class and saves it into a Chroma sqlite file. |
|
''' |
|
|
|
print(f"> Total split documents: {len(docs_out)}") |
|
|
|
|
|
|
|
page_contents = [doc.page_content for doc in docs_out] |
|
|
|
|
|
|
|
file_list = [string.name for string in in_file] |
|
|
|
print(file_list) |
|
|
|
embeddings_file_names = [string for string in file_list if "embedding" in string] |
|
|
|
if embeddings_file_names: |
|
embeddings_out = np.load(embeddings_file_names[0]) |
|
print("embeddings loaded: ", embeddings_out) |
|
|
|
if not embeddings_file_names: |
|
tic = time.perf_counter() |
|
|
|
|
|
|
|
|
|
embeddings_out = embeddings.encode(sentences=page_contents, max_length=1024, show_progress_bar = True, batch_size = 32) |
|
|
|
|
|
|
|
toc = time.perf_counter() |
|
time_out = f"The embedding took {toc - tic:0.1f} seconds" |
|
|
|
np.savez_compressed('semantic_search_embeddings.npz', embeddings_out) |
|
|
|
out_message = "Document processing complete. Ready to search." |
|
print(out_message) |
|
|
|
return out_message, embeddings_out |
|
|
|
def process_data_from_scores_df(df_docs, in_join_file, out_passages, vec_score_cut_off, vec_weight, orig_df_col, in_join_column, search_df_join_column): |
|
|
|
def create_docs_keep_from_df(df): |
|
dict_out = {'ids' : [df['ids']], |
|
'documents': [df['documents']], |
|
'metadatas': [df['metadatas']], |
|
'distances': [round(df['distances'].astype(float), 3)], |
|
'embeddings': None |
|
} |
|
return dict_out |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
docs_scores = df_docs["distances"] |
|
|
|
|
|
score_more_limit = df_docs.loc[docs_scores > vec_score_cut_off, :] |
|
|
|
|
|
|
|
|
|
if score_more_limit.empty: |
|
return 'No result found!', None |
|
|
|
|
|
docs_len = score_more_limit["documents"].str.len() >= 100 |
|
|
|
|
|
|
|
length_more_limit = score_more_limit.loc[docs_len == True, :] |
|
|
|
|
|
|
|
|
|
if length_more_limit.empty: |
|
return 'No result found!', None |
|
|
|
length_more_limit['ids'] = length_more_limit['ids'].astype(int) |
|
|
|
|
|
|
|
|
|
df_metadata_expanded = length_more_limit['metadatas'].apply(pd.Series) |
|
|
|
|
|
|
|
|
|
|
|
results_df_out = pd.concat([length_more_limit.drop('metadatas', axis=1), df_metadata_expanded], axis=1) |
|
|
|
results_df_out = results_df_out.rename(columns={"documents":orig_df_col}) |
|
|
|
results_df_out = results_df_out.drop(["page_section", "row", "source", "id"], axis=1, errors="ignore") |
|
results_df_out['distances'] = round(results_df_out['distances'].astype(float), 3) |
|
|
|
|
|
|
|
|
|
|
|
if in_join_file: |
|
join_filename = in_join_file.name |
|
|
|
|
|
join_df = read_file(join_filename) |
|
join_df[in_join_column] = join_df[in_join_column].astype(str).str.replace("\.0$","", regex=True) |
|
|
|
|
|
join_df = join_df.drop_duplicates(in_join_column) |
|
|
|
results_df_out[search_df_join_column] = results_df_out[search_df_join_column].astype(str).str.replace("\.0$","", regex=True) |
|
|
|
results_df_out = results_df_out.merge(join_df,left_on=search_df_join_column, right_on=in_join_column, how="left").drop(in_join_column, axis=1) |
|
|
|
return results_df_out |
|
|
|
def jina_simple_retrieval(new_question_kworded, vectorstore, docs, orig_df_col:str, k_val:int, out_passages:int, |
|
vec_score_cut_off:float, vec_weight:float, in_join_file = None, in_join_column = None, search_df_join_column = None, device = torch_device, embeddings = embeddings, progress=gr.Progress()): |
|
|
|
print("vectorstore loaded: ", vectorstore) |
|
|
|
|
|
vectorstore_tensor = tensor(vectorstore).to(device) |
|
|
|
|
|
embeddings = embeddings.to(device) |
|
|
|
|
|
query = embeddings.encode(new_question_kworded) |
|
query_tensor = tensor(query).to(device) |
|
|
|
if query_tensor.dim() == 1: |
|
query_tensor = query_tensor.unsqueeze(0) |
|
|
|
|
|
query_norm = query_tensor / query_tensor.norm(dim=1, keepdim=True) |
|
vectorstore_norm = vectorstore_tensor / vectorstore_tensor.norm(dim=1, keepdim=True) |
|
|
|
|
|
cosine_similarities = mm(query_norm, vectorstore_norm.T) |
|
|
|
|
|
cosine_similarities = cosine_similarities.flatten() |
|
|
|
|
|
cosine_similarities = cosine_similarities.cpu().numpy() |
|
|
|
|
|
cosine_similarities_series = pd.Series(cosine_similarities) |
|
|
|
|
|
page_contents = [doc.page_content for doc in docs] |
|
page_meta = [doc.metadata for doc in docs] |
|
ids_range = range(0,len(page_contents)) |
|
ids = [str(element) for element in ids_range] |
|
|
|
df_docs = pd.DataFrame(data={"ids": ids, |
|
"documents": page_contents, |
|
"metadatas":page_meta, |
|
"distances":cosine_similarities_series}).sort_values("distances", ascending=False).iloc[0:k_val,:] |
|
|
|
|
|
results_df_out = process_data_from_scores_df(df_docs, in_join_file, out_passages, vec_score_cut_off, vec_weight, orig_df_col, in_join_column, search_df_join_column) |
|
|
|
results_df_name = "semantic_search_result.csv" |
|
results_df_out.to_csv(results_df_name, index= None) |
|
results_first_text = results_df_out.iloc[0, 1] |
|
|
|
return results_first_text, results_df_name |
|
|
|
def chroma_retrieval(new_question_kworded:str, vectorstore, docs, orig_df_col:str, k_val:int, out_passages:int, |
|
vec_score_cut_off:float, vec_weight:float, in_join_file = None, in_join_column = None, search_df_join_column = None): |
|
|
|
query = embeddings.encode(new_question_kworded).tolist() |
|
|
|
docs = vectorstore.query( |
|
query_embeddings=query, |
|
n_results= k_val |
|
|
|
|
|
) |
|
|
|
df_docs = pd.DataFrame(data={'ids': docs['ids'][0], |
|
'documents': docs['documents'][0], |
|
'metadatas':docs['metadatas'][0], |
|
'distances':docs['distances'][0] |
|
|
|
}) |
|
|
|
results_df_out = process_data_from_scores_df(df_docs, in_join_file, out_passages, vec_score_cut_off, vec_weight, orig_df_col, in_join_column, search_df_join_column) |
|
|
|
results_df_name = "semantic_search_result.csv" |
|
results_df_out.to_csv(results_df_name, index= None) |
|
results_first_text = results_df_out[orig_df_col].iloc[0] |
|
|
|
return results_first_text, results_df_name |
|
|
|
|
|
|
|
block = gr.Blocks(theme = gr.themes.Base()) |
|
|
|
with block: |
|
|
|
ingest_text = gr.State() |
|
ingest_metadata = gr.State() |
|
ingest_docs = gr.State() |
|
vectorstore_state = gr.State() |
|
embeddings_state = gr.State() |
|
|
|
k_val = gr.State(9999) |
|
out_passages = gr.State(9999) |
|
vec_score_cut_off = gr.State(0.7) |
|
vec_weight = gr.State(1) |
|
|
|
docs_keep_as_doc_state = gr.State() |
|
doc_df_state = gr.State() |
|
docs_keep_out_state = gr.State() |
|
|
|
corpus_state = gr.State() |
|
data_state = gr.State(pd.DataFrame()) |
|
|
|
in_k1_info = gr.State("""k1: Constant used for influencing the term frequency saturation. After saturation is reached, additional |
|
presence for the term adds a significantly less additional score. According to [1]_, experiments suggest |
|
that 1.2 < k1 < 2 yields reasonably good results, although the optimal value depends on factors such as |
|
the type of documents or queries. Information taken from https://github.com/Inspirateur/Fast-BM25""") |
|
in_b_info = gr.State("""b: Constant used for influencing the effects of different document lengths relative to average document length. |
|
When b is bigger, lengthier documents (compared to average) have more impact on its effect. According to |
|
[1]_, experiments suggest that 0.5 < b < 0.8 yields reasonably good results, although the optimal value |
|
depends on factors such as the type of documents or queries. Information taken from https://github.com/Inspirateur/Fast-BM25""") |
|
in_alpha_info = gr.State("""alpha: IDF cutoff, terms with a lower idf score than alpha will be dropped. A higher alpha will lower the accuracy of BM25 but increase performance. Information taken from https://github.com/Inspirateur/Fast-BM25""") |
|
in_no_search_info = gr.State("""Search results number: Maximum number of search results that will be returned. Bear in mind that if the alpha value is greater than the minimum, common words will be removed from the dataset, and so the number of search results returned may be lower than this value.""") |
|
in_clean_info = gr.State("""Clean text: Clean the input text and search query. The function will try to remove email components and tags, and then will 'stem' the words. I.e. it will remove the endings of words (e.g. smashed becomes smash) so that the search engine is looking for the common 'core' of words between the query and dataset.""") |
|
|
|
gr.Markdown( |
|
""" |
|
# Fast text search |
|
Enter a text query below to search through a text data column and find relevant terms. It will only find terms containing the exact text you enter. Your data should contain at least 20 entries for the search to consistently return results. |
|
""") |
|
|
|
with gr.Tab(label="Keyword search"): |
|
with gr.Row(): |
|
current_source = gr.Textbox(label="Current data source(s)", value="None") |
|
|
|
with gr.Accordion(label = "Load in data", open=True): |
|
in_bm25_file = gr.File(label="Upload your search data here", file_count= 'multiple', file_types = ['.parquet', '.csv']) |
|
with gr.Row(): |
|
in_bm25_column = gr.Dropdown(label="Enter the name of the text column in the data file to search") |
|
load_bm25_data_button = gr.Button(value="Load data") |
|
|
|
with gr.Row(): |
|
load_finished_message = gr.Textbox(label="Load progress", scale = 2) |
|
|
|
with gr.Accordion(label = "Search data", open=True): |
|
with gr.Row(): |
|
keyword_query = gr.Textbox(label="Enter your search term") |
|
mod_query = gr.Textbox(label="Cleaned search term (the terms that are passed to the search engine)") |
|
|
|
keyword_search_button = gr.Button(value="Search text") |
|
|
|
with gr.Row(): |
|
output_single_text = gr.Textbox(label="Top result") |
|
output_file = gr.File(label="File output") |
|
|
|
with gr.Tab("Fuzzy/semantic search"): |
|
with gr.Row(): |
|
current_source_semantic = gr.Textbox(label="Current data source(s)", value="None") |
|
|
|
with gr.Accordion("Load in data", open = True): |
|
in_semantic_file = gr.File(label="Upload data file for semantic search", file_count= 'multiple', file_types = ['.parquet', '.csv', '.npy', '.npz']) |
|
|
|
with gr.Row(): |
|
in_semantic_column = gr.Dropdown(label="Enter the name of the text column in the data file to search") |
|
load_semantic_data_button = gr.Button(value="Load in data file", variant="secondary") |
|
|
|
ingest_embed_out = gr.Textbox(label="File/web page preparation progress") |
|
|
|
semantic_query = gr.Textbox(label="Enter semantic search query here") |
|
semantic_submit = gr.Button(value="Start semantic search", variant="secondary", scale = 1) |
|
|
|
with gr.Row(): |
|
semantic_output_single_text = gr.Textbox(label="Top result") |
|
semantic_output_file = gr.File(label="File output") |
|
|
|
with gr.Tab(label="Advanced options"): |
|
with gr.Accordion(label="Data load / save options", open = False): |
|
|
|
in_clean_data = gr.Dropdown(label = "Clean text during load (remove tags, stem words). This will take some time!", value="No", choices=["Yes", "No"]) |
|
|
|
with gr.Accordion(label="Search options", open = False): |
|
with gr.Row(): |
|
in_k1 = gr.Slider(label = "k1 value", value = 1.5, minimum = 0.1, maximum = 5, step = 0.1, scale = 3) |
|
in_k1_button = gr.Button(value = "k1 value info", scale = 1) |
|
with gr.Row(): |
|
in_b = gr.Slider(label = "b value", value = 0.75, minimum = 0.1, maximum = 5, step = 0.05, scale = 3) |
|
in_b_button = gr.Button(value = "b value info", scale = 1) |
|
with gr.Row(): |
|
in_alpha = gr.Slider(label = "alpha value / IDF cutoff", value = -5, minimum = -5, maximum = 10, step = 1, scale = 3) |
|
in_alpha_button = gr.Button(value = "alpha value info", scale = 1) |
|
with gr.Row(): |
|
in_no_search_results = gr.Slider(label="Maximum number of search results to return", value = 100000, minimum=10, maximum=100000, step=10, scale = 3) |
|
in_no_search_results_button = gr.Button(value = "Search results number info", scale = 1) |
|
with gr.Row(): |
|
in_search_param_button = gr.Button(value="Load search parameters (Need to click this if you changed anything above)") |
|
with gr.Accordion(label = "Join on additional dataframes to results", open = False): |
|
in_join_file = gr.File(label="Upload your data to join here") |
|
in_join_column = gr.Dropdown(label="Column to join in new data frame") |
|
search_df_join_column = gr.Dropdown(label="Column to join in search data frame") |
|
|
|
in_search_param_button.click(fn=prepare_bm25, inputs=[corpus_state, in_k1, in_b, in_alpha], outputs=[load_finished_message]) |
|
|
|
|
|
in_k1_button.click(display_info, inputs=in_k1_info) |
|
in_b_button.click(display_info, inputs=in_b_info) |
|
in_alpha_button.click(display_info, inputs=in_alpha_info) |
|
in_no_search_results_button.click(display_info, inputs=in_no_search_info) |
|
|
|
|
|
|
|
in_bm25_file.upload(put_columns_in_df, inputs=[in_bm25_file, in_bm25_column], outputs=[in_bm25_column, in_clean_data, search_df_join_column]) |
|
in_join_file.upload(put_columns_in_join_df, inputs=[in_join_file, in_join_column], outputs=[in_join_column]) |
|
|
|
|
|
load_bm25_data_button.click(fn=prepare_input_data, inputs=[in_bm25_file, in_bm25_column, in_clean_data], outputs=[corpus_state, load_finished_message, data_state, output_file]).\ |
|
then(fn=prepare_bm25, inputs=[corpus_state, in_k1, in_b, in_alpha], outputs=[load_finished_message]).\ |
|
then(fn=put_columns_in_df, inputs=[in_bm25_file, in_bm25_column], outputs=[in_bm25_column, in_clean_data, search_df_join_column]) |
|
|
|
|
|
keyword_search_button.click(fn=bm25_search, inputs=[in_query, in_no_search_results, data_state, in_bm25_column, in_clean_data, in_join_file, in_join_column, search_df_join_column], outputs=[output_single_text, output_file, mod_query], api_name="search") |
|
keyword_query.submit(fn=bm25_search, inputs=[in_query, in_no_search_results, data_state, in_bm25_column, in_clean_data, in_join_file, in_join_column, search_df_join_column], outputs=[output_single_text, output_file, mod_query]) |
|
|
|
|
|
|
|
in_semantic_file.upload(put_columns_in_df, inputs=[in_semantic_file, in_semantic_column], outputs=[in_semantic_column, in_clean_data, search_df_join_column]) |
|
load_semantic_data_button.click(ing.parse_csv_or_excel, inputs=[in_semantic_file, in_semantic_column], outputs=[ingest_text, current_source_semantic, ingest_embed_out]).\ |
|
then(ing.csv_excel_text_to_docs, inputs=[ingest_text, in_semantic_column], outputs=[ingest_docs, ingest_embed_out]).\ |
|
then(docs_to_np_array, inputs=[ingest_docs, in_semantic_file], outputs=[ingest_embed_out, vectorstore_state]) |
|
|
|
|
|
semantic_submit.click(jina_simple_retrieval, inputs=[semantic_query, vectorstore_state, ingest_docs, in_semantic_column, k_val, out_passages, vec_score_cut_off, vec_weight, in_join_file, in_join_column, search_df_join_column], outputs=[semantic_output_single_text, semantic_output_file], api_name="semantic") |
|
|
|
semantic_query.submit(jina_simple_retrieval, inputs=[semantic_query, vectorstore_state, ingest_docs, in_semantic_column, k_val, out_passages, vec_score_cut_off, vec_weight, in_join_file, in_join_column, search_df_join_column], outputs=[semantic_output_single_text, semantic_output_file], api_name="semantic") |
|
|
|
|
|
in_bm25_column.change(dummy_function, in_bm25_column, None) |
|
search_df_join_column.change(dummy_function, search_df_join_column, None) |
|
in_join_column.change(dummy_function, in_join_column, None) |
|
in_semantic_column.change(dummy_function, in_join_column, None) |
|
|
|
block.queue().launch(debug=True) |
|
|
|
|
|
|