|
|
|
import time |
|
import re |
|
import ast |
|
import gzip |
|
import pandas as pd |
|
import gradio as gr |
|
import pickle |
|
from typing import Type, List, Literal |
|
|
|
|
|
from pydantic import BaseModel, Field |
|
|
|
|
|
PandasDataFrame = Type[pd.DataFrame] |
|
|
|
class Document(BaseModel): |
|
"""Class for storing a piece of text and associated metadata. Implementation adapted from Langchain code: https://github.com/langchain-ai/langchain/blob/master/libs/core/langchain_core/documents/base.py""" |
|
|
|
page_content: str |
|
"""String text.""" |
|
metadata: dict = Field(default_factory=dict) |
|
"""Arbitrary metadata about the page content (e.g., source, relationships to other |
|
documents, etc.). |
|
""" |
|
type: Literal["Document"] = "Document" |
|
|
|
|
|
split_strat = ["\n\n", "\n", ". ", "! ", "? "] |
|
chunk_size = 512 |
|
chunk_overlap = 0 |
|
start_index = True |
|
|
|
from search_funcs.helper_functions import get_file_path_end_with_ext, detect_file_type, get_file_path_end, ensure_output_folder_exists |
|
from search_funcs.bm25_functions import save_prepared_bm25_data |
|
from search_funcs.clean_funcs import initial_clean |
|
|
|
def parse_file_not_used(file_paths, text_column='text'): |
|
""" |
|
Accepts a list of file paths, determines each file's type based on its extension, |
|
and passes it to the relevant parsing function. |
|
|
|
Parameters: |
|
file_paths (list): List of file paths. |
|
text_column (str): Name of the column in CSV/Excel files that contains the text content. |
|
|
|
Returns: |
|
dict: A dictionary with file paths as keys and their parsed content (or error message) as values. |
|
""" |
|
|
|
|
|
|
|
if not isinstance(file_paths, list): |
|
raise ValueError("Expected a list of file paths.") |
|
|
|
extension_to_parser = { |
|
|
|
|
|
|
|
|
|
|
|
'.csv': lambda file_path: parse_csv_or_excel(file_path, text_column), |
|
'.xlsx': lambda file_path: parse_csv_or_excel(file_path, text_column), |
|
'.parquet': lambda file_path: parse_csv_or_excel(file_path, text_column) |
|
} |
|
|
|
parsed_contents = {} |
|
file_names = [] |
|
|
|
for file_path in file_paths: |
|
|
|
|
|
|
|
file_extension = detect_file_type(file_path.name) |
|
if file_extension in extension_to_parser: |
|
parsed_contents[file_path.name] = extension_to_parser[file_extension](file_path.name) |
|
else: |
|
parsed_contents[file_path.name] = f"Unsupported file type: {file_extension}" |
|
|
|
filename_end = get_file_path_end_with_ext(file_path.name) |
|
|
|
file_names.append(filename_end) |
|
|
|
return parsed_contents, file_names |
|
|
|
def text_regex_clean(text): |
|
|
|
text = re.sub(r"(\w+)-\n(\w+)", r"\1\2", text) |
|
|
|
text = re.sub(r'(?<=[a-zA-Z])\n\n', '.\n\n', text) |
|
|
|
text = re.sub(r"(?<!\n\s)\n(?!\s\n)", " ", text.strip()) |
|
|
|
text = re.sub(r"\n\s*\n", "\n\n", text) |
|
text = re.sub(r" ", " ", text) |
|
|
|
text = re.sub(r'(?<=[a-z])(?=[A-Z])', '. \n\n', text) |
|
|
|
return text |
|
|
|
def parse_csv_or_excel(file_path, data_state, text_column = "text"): |
|
""" |
|
Read in a CSV or Excel file. |
|
|
|
Parameters: |
|
file_path (str): Path to the CSV file. |
|
text_column (str): Name of the column in the CSV file that contains the text content. |
|
|
|
Returns: |
|
Pandas DataFrame: Dataframe output from file read |
|
""" |
|
|
|
file_list = [string.name for string in file_path] |
|
|
|
|
|
|
|
data_file_names = [string for string in file_list if "tokenised" not in string.lower() and "npz" not in string.lower()] |
|
|
|
data_file_name = data_file_names[0] |
|
|
|
|
|
file_name = get_file_path_end_with_ext(data_file_name) |
|
|
|
message = "Loaded in file. Now converting to document format." |
|
print(message) |
|
|
|
return data_state, file_name, message |
|
|
|
def write_out_metadata_as_string(metadata_in): |
|
|
|
if isinstance(metadata_in, dict): |
|
metadata_in = [metadata_in] |
|
|
|
metadata_string = [f"{' '.join(f'{k}: {v}' for k, v in d.items() if k != 'page_section')}" for d in metadata_in] |
|
return metadata_string |
|
|
|
def combine_metadata_columns(df, cols): |
|
|
|
df['metadata'] = '{' |
|
df['blank_column'] = '' |
|
|
|
for n, col in enumerate(cols): |
|
df[col] = df[col].astype(str).str.replace('"',"'").str.replace('\n', ' ').str.replace('\r', ' ').str.replace('\r\n', ' ').str.cat(df['blank_column'].astype(str), sep="") |
|
|
|
df['metadata'] = df['metadata'] + '"' + cols[n] + '": "' + df[col] + '", ' |
|
|
|
|
|
df['metadata'] = (df['metadata'] + "}").str.replace(', }', '}').str.replace('", }"', '}') |
|
|
|
return df['metadata'] |
|
|
|
def split_string_into_chunks(input_string, max_length, split_symbols): |
|
|
|
if not input_string or not split_symbols: |
|
return [input_string] |
|
|
|
chunks = [] |
|
current_chunk = "" |
|
|
|
for char in input_string: |
|
current_chunk += char |
|
if len(current_chunk) >= max_length or char in split_symbols: |
|
|
|
chunks.append(current_chunk) |
|
current_chunk = "" |
|
|
|
|
|
if current_chunk: |
|
chunks.append(current_chunk) |
|
|
|
return chunks |
|
|
|
def clean_line_breaks(text): |
|
|
|
return text.replace('\n', ' ').replace('\r', ' ').replace('\r\n', ' ') |
|
|
|
def parse_metadata(row): |
|
try: |
|
|
|
|
|
|
|
|
|
|
|
row_str = str(row) if not isinstance(row, str) else row |
|
|
|
row_str.replace('\n', ' ').replace('\r', ' ').replace('\r\n', ' ') |
|
|
|
|
|
metadata = ast.literal_eval(row_str) |
|
|
|
return metadata |
|
except SyntaxError as e: |
|
print(f"Failed to parse metadata: {row_str}") |
|
print(f"Error: {e}") |
|
|
|
return None |
|
|
|
def csv_excel_text_to_docs(df, in_file, text_column, clean = "No", return_intermediate_files = "No", chunk_size=None, progress=gr.Progress(track_tqdm=True)) -> List[Document]: |
|
"""Converts a DataFrame's content to a list of dictionaries in the 'Document' format, containing page_content and associated metadata.""" |
|
|
|
ensure_output_folder_exists() |
|
output_list = [] |
|
|
|
if not in_file: |
|
return None, "Please load in at least one file.", output_list |
|
|
|
progress(0, desc = "Loading in data") |
|
|
|
file_list = [string.name for string in in_file] |
|
|
|
data_file_names = [string for string in file_list if "tokenised" not in string and "npz" not in string.lower()] |
|
|
|
if not data_file_names: |
|
return doc_sections, "Please load in at least one csv/Excel/parquet data file.", output_list |
|
|
|
if not text_column: |
|
return None, "Please enter a column name to search" |
|
|
|
data_file_name = data_file_names[0] |
|
|
|
|
|
if "prepared_docs" in data_file_name: |
|
print("Loading in documents from file.") |
|
|
|
|
|
|
|
|
|
|
|
doc_sections = df |
|
|
|
|
|
|
|
|
|
|
|
|
|
return doc_sections, "Finished preparing documents", output_list |
|
|
|
|
|
ingest_tic = time.perf_counter() |
|
|
|
doc_sections = [] |
|
df[text_column] = df[text_column].astype(str).str.strip() |
|
|
|
original_text_column = text_column |
|
|
|
if clean == "Yes": |
|
progress(0.1, desc = "Cleaning data") |
|
clean_tic = time.perf_counter() |
|
print("Starting data clean.") |
|
|
|
|
|
|
|
df_list = list(df[text_column]) |
|
df_list = initial_clean(df_list) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
out_file_name, text_column, df = save_prepared_bm25_data(data_file_name, df_list, df, text_column) |
|
|
|
df[text_column] = df_list |
|
|
|
|
|
clean_toc = time.perf_counter() |
|
clean_time_out = f"Cleaning the text took {clean_toc - clean_tic:0.1f} seconds." |
|
print(clean_time_out) |
|
|
|
cols = [col for col in df.columns if col != original_text_column] |
|
|
|
df["metadata"] = combine_metadata_columns(df, cols) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
progress(0.3, desc = "Converting data to document format") |
|
|
|
|
|
doc_sections = [Document(page_content=row[text_column], |
|
metadata= parse_metadata(row["metadata"])) |
|
for index, row in progress.tqdm(df.iterrows(), desc = "Splitting up text", unit = "rows")] |
|
|
|
ingest_toc = time.perf_counter() |
|
|
|
ingest_time_out = f"Preparing documents took {ingest_toc - ingest_tic:0.1f} seconds" |
|
print(ingest_time_out) |
|
|
|
if return_intermediate_files == "Yes": |
|
progress(0.5, desc = "Saving prepared documents") |
|
data_file_out_name_no_ext = get_file_path_end(data_file_name) |
|
file_name = data_file_out_name_no_ext |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if clean == "No": |
|
|
|
out_doc_file_name = "output/" + file_name + "_prepared_docs.pkl.gz" |
|
with gzip.open(out_doc_file_name, 'wb') as file: |
|
pickle.dump(doc_sections, file) |
|
|
|
|
|
elif clean == "Yes": |
|
|
|
|
|
out_doc_file_name = "output/" + file_name + "_cleaned_prepared_docs.pkl.gz" |
|
with gzip.open(out_doc_file_name, 'wb') as file: |
|
pickle.dump(doc_sections, file) |
|
|
|
|
|
output_list.append(out_doc_file_name) |
|
print("Documents saved to file.") |
|
|
|
return doc_sections, "Finished preparing documents.", output_list |
|
|
|
def document_to_dataframe(documents): |
|
''' |
|
Convert an object in document format to pandas dataframe |
|
''' |
|
rows = [] |
|
|
|
for doc in documents: |
|
|
|
doc_dict = doc.dict() |
|
metadata = doc_dict.pop('metadata') |
|
|
|
|
|
metadata['page_content'] = doc_dict['page_content'] |
|
metadata['type'] = doc_dict['type'] |
|
|
|
|
|
rows.append(metadata) |
|
|
|
|
|
df = pd.DataFrame(rows) |
|
return df |
|
|