import nltk from typing import TypeVar nltk.download('names') nltk.download('stopwords') nltk.download('wordnet') nltk.download('punkt') from search_funcs.fast_bm25 import BM25 from search_funcs.clean_funcs import initial_clean, get_lemma_tokens#, stem_sentence from nltk import word_tokenize #from sentence_transformers import SentenceTransformer # Try SpaCy alternative tokeniser PandasDataFrame = TypeVar('pd.core.frame.DataFrame') import gradio as gr import pandas as pd import numpy as np import os import time from chromadb.config import Settings from transformers import AutoModel # Load the SpaCy mode from spacy.cli import download import spacy spacy.prefer_gpu() #os.system("python -m spacy download en_core_web_sm") try: nlp = spacy.load("en_core_web_sm") except: download("en_core_web_sm") nlp = spacy.load("en_core_web_sm") # model = AutoModel.from_pretrained('./model_and_tokenizer/int8-model.onnx', use_embedding_runtime=True) # sentence_embeddings = model.generate(engine_input)['last_hidden_state:0'] # print("Sentence embeddings:", sentence_embeddings) import search_funcs.ingest as ing #import search_funcs.chatfuncs as chatf # Import Chroma and instantiate a client. The default Chroma client is ephemeral, meaning it will not save to disk. import chromadb #from typing_extensions import Protocol #from chromadb import Documents, EmbeddingFunction, Embeddings from torch import cuda, backends, tensor, mm # Check for torch cuda print(cuda.is_available()) print(backends.cudnn.enabled) if cuda.is_available(): torch_device = "cuda" os.system("nvidia-smi") else: torch_device = "cpu" # Remove Chroma database file. If it exists as it can cause issues chromadb_file = "chroma.sqlite3" if os.path.isfile(chromadb_file): os.remove(chromadb_file) def load_embeddings(embeddings_name = "jinaai/jina-embeddings-v2-small-en"): ''' Load embeddings model and create a global variable based on it. ''' # Import Chroma and instantiate a client. The default Chroma client is ephemeral, meaning it will not save to disk. #else: embeddings_func = AutoModel.from_pretrained(embeddings_name, trust_remote_code=True, device_map="auto") global embeddings embeddings = embeddings_func return embeddings # Load embeddings embeddings_name = "jinaai/jina-embeddings-v2-small-en" embeddings_model = AutoModel.from_pretrained(embeddings_name, trust_remote_code=True, device_map="auto") #embeddings_model = SentenceTransformer("BAAI/bge-small-en-v1.5") #embeddings_model = SentenceTransformer("paraphrase-MiniLM-L3-v2") #tokenizer = AutoTokenizer.from_pretrained(embeddings_name, device_map = "auto")#to(torch_device) # From Jina # Construction 2 - from SpaCy - https://spacy.io/api/tokenizer #from spacy.lang.en import English #nlp = #English() # Create a Tokenizer with the default settings for English # including punctuation rules and exceptions tokenizer = nlp.tokenizer embeddings = embeddings_model#load_embeddings(embeddings_name) def prepare_input_data(in_file, text_column, clean="No", progress=gr.Progress()): file_list = [string.name for string in in_file] print(file_list) data_file_names = [string for string in file_list if "tokenised" not in string] df = read_file(data_file_names[0]) ## Load in pre-tokenised corpus if exists tokenised_df = pd.DataFrame() tokenised_file_names = [string for string in file_list if "tokenised" in string] if tokenised_file_names: tokenised_df = read_file(tokenised_file_names[0]) print("Tokenised df is: ", tokenised_df.head()) #df = pd.read_parquet(file_in.name) df_list = list(df[text_column].astype(str).str.lower()) #df_list = df import math def get_total_batches(my_list, batch_size): return math.ceil(len(my_list) / batch_size) from itertools import islice def batch(iterable, batch_size): iterator = iter(iterable) for first in iterator: yield [first] + list(islice(iterator, batch_size - 1)) #def batch(my_list, batch_size): # Splitting the list into batches # for i in range(0, len(my_list), batch_size): # batch = my_list[i:i + batch_size] # Process each batch # Replace this with your processing logic #print("Processing batch:", batch) batch_size = 256 tic = time.perf_counter() if clean == "Yes": df_list_clean = initial_clean(df_list) # Save to file if you have cleaned the data out_file_name = save_prepared_data(in_file, df_list_clean, df, text_column) #corpus = [word_tokenize(doc.lower()) for doc in df_list_clean] #corpus = [word_tokenize(doc.lower()) for doc in progress.tqdm(df_list_clean, desc = "Tokenising text", unit = "rows")] #total_batches = get_total_batches(df_list_clean, batch_size) #data_batched = batch(df_list_clean, batch_size) #print(data_batched) #print(df_list_clean[0]) # Using encode_batch #encodings = tokenizer.encode_batch(texts) # Extracting tokens #tokens_list = [encoding.tokens for encoding in encodings] #corpus = [tokenizer(doc.lower()) for doc in progress.tqdm(df_list_clean, desc = "Tokenising text", unit = "rows")] #corpus = [tokenizer.encode(doc_batch) for doc_batch in progress.tqdm(data_batched, desc = "Tokenising text", unit = "batches out of " + str(total_batches))] # for jina # print(df_list_clean) # corpus = tokenizer.batch_encode_plus(df_list_clean).tokens #corpus = [[token.text for token in nlp(text)] for text in df_list_clean] # Tokenize texts in batches if not tokenised_df.empty: corpus = tokenised_df.iloc[:,0].tolist() print("Corpus is: ", corpus[0:5]) else: corpus = [] for doc in tokenizer.pipe(progress.tqdm(df_list_clean, desc = "Tokenising text", unit = "rows"), batch_size=batch_size): corpus.append([token.text for token in doc]) #for doc in nlp.pipe(progress.tqdm(df_list_clean, desc = "Tokenising text", unit = "batches out of " + str(total_batches)), batch_size=batch_size): # You can adjust batch_size based on your requirement # corpus.append([token.text for token in doc]) else: #total_batches = get_total_batches(df_list, batch_size) #data_batched = batch(df_list, batch_size) #print(data_batched) #corpus = [word_tokenize(doc.lower()) for doc in df_list] #corpus = [word_tokenize(doc.lower()) for doc in progress.tqdm(df_list, desc = "Tokenising text", unit = "rows")] #corpus = [tokenizer.encode(doc_batch) for doc_batch in progress.tqdm(data_batched, desc = "Tokenising text", unit = "batches out of " + str(total_batches))] # for jina #corpus = tokenizer.batch_encode_plus(df_list).tokens # for jina print(df_list[0]) #corpus = [[token.text for token in nlp(text)] for text in df_list] # Tokenize texts in batches if not tokenised_df.empty: corpus = tokenised_df.iloc[:,0].tolist() print("Corpus is: ", corpus[0:5]) else: corpus = [] for doc in tokenizer.pipe(progress.tqdm(df_list, desc = "Tokenising text", unit = "rows"), batch_size=batch_size): #for doc in nlp.pipe(progress.tqdm(df_list, desc = "Tokenising text", unit = "batches out of " + str(total_batches)), #batch_size=batch_size): # You can adjust batch_size based on your requirement corpus.append([token.text for token in doc]) #corpus = tokenizer(df_list) out_file_name = None print(corpus[0]) toc = time.perf_counter() tokenizer_time_out = f"Tokenising the text took {toc - tic:0.1f} seconds" print("Finished data clean. " + tokenizer_time_out) if len(df_list) >= 20: message = "Data loaded" else: message = "Data loaded. Warning: dataset may be too short to get consistent search results." pd.DataFrame(data={"Corpus":corpus}).to_parquet("keyword_search_tokenised_data.parquet") return corpus, message, df, out_file_name def get_file_path_end(file_path): # First, get the basename of the file (e.g., "example.txt" from "/path/to/example.txt") basename = os.path.basename(file_path) # Then, split the basename and its extension and return only the basename without the extension filename_without_extension, _ = os.path.splitext(basename) print(filename_without_extension) return filename_without_extension def save_prepared_data(in_file, prepared_text_list, in_df, in_bm25_column): # Check if the list and the dataframe have the same length if len(prepared_text_list) != len(in_df): raise ValueError("The length of 'prepared_text_list' and 'in_df' must match.") file_end = ".parquet" file_name = get_file_path_end(in_file.name) + "_cleaned" + file_end prepared_text_df = pd.DataFrame(data={in_bm25_column + "_cleaned":prepared_text_list}) # Drop original column from input file to reduce file size in_df = in_df.drop(in_bm25_column, axis = 1) prepared_df = pd.concat([in_df, prepared_text_df], axis = 1) if file_end == ".csv": prepared_df.to_csv(file_name) elif file_end == ".parquet": prepared_df.to_parquet(file_name) else: file_name = None return file_name def prepare_bm25(corpus, k1=1.5, b = 0.75, alpha=-5): #bm25.save("saved_df_bm25") #bm25 = BM25.load(re.sub(r'\.pkl$', '', file_in.name)) print("Preparing BM25 corpus") global bm25 bm25 = BM25(corpus, k1=k1, b=b, alpha=alpha) message = "Search parameters loaded." print(message) return message def convert_query_to_tokens(free_text_query, clean="No"): ''' Split open text query into tokens and then lemmatise to get the core of the word ''' if clean=="Yes": split_query = word_tokenize(free_text_query.lower()) out_query = get_lemma_tokens(split_query) #out_query = stem_sentence(free_text_query) else: split_query = word_tokenize(free_text_query.lower()) out_query = split_query return out_query def bm25_search(free_text_query, in_no_search_results, original_data, text_column, clean = "No", in_join_file = None, in_join_column = "", search_df_join_column = ""): # Prepare query if (clean == "Yes") | (text_column.endswith("_cleaned")): token_query = convert_query_to_tokens(free_text_query, clean="Yes") else: token_query = convert_query_to_tokens(free_text_query, clean="No") print(token_query) # Perform search print("Searching") results_index, results_text, results_scores = bm25.extract_documents_and_scores(token_query, bm25.corpus, n=in_no_search_results) #bm25.corpus #original_data[text_column] if not results_index: return "No search results found", None, token_query print("Search complete") # Prepare results and export joined_texts = [' '.join(inner_list) for inner_list in results_text] results_df = pd.DataFrame(data={"index": results_index, "search_text": joined_texts, "search_score_abs": results_scores}) results_df['search_score_abs'] = abs(round(results_df['search_score_abs'], 2)) results_df_out = results_df[['index', 'search_text', 'search_score_abs']].merge(original_data,left_on="index", right_index=True, how="left")#.drop("index", axis=1) # Join on additional files if in_join_file: join_filename = in_join_file.name # Import data join_df = read_file(join_filename) join_df[in_join_column] = join_df[in_join_column].astype(str).str.replace("\.0$","", regex=True) results_df_out[search_df_join_column] = results_df_out[search_df_join_column].astype(str).str.replace("\.0$","", regex=True) # Duplicates dropped so as not to expand out dataframe join_df = join_df.drop_duplicates(in_join_column) results_df_out = results_df_out.merge(join_df,left_on=search_df_join_column, right_on=in_join_column, how="left").drop(in_join_column, axis=1) # Reorder results by score results_df_out = results_df_out.sort_values('search_score_abs', ascending=False) # Out file results_df_name = "search_result.csv" results_df_out.to_csv(results_df_name, index= None) results_first_text = results_df_out[text_column].iloc[0] print("Returning results") return results_first_text, results_df_name, token_query def detect_file_type(filename): """Detect the file type based on its extension.""" if (filename.endswith('.csv')) | (filename.endswith('.csv.gz')) | (filename.endswith('.zip')): return 'csv' elif filename.endswith('.xlsx'): return 'xlsx' elif filename.endswith('.parquet'): return 'parquet' else: raise ValueError("Unsupported file type.") def read_file(filename): """Read the file based on its detected type.""" file_type = detect_file_type(filename) if file_type == 'csv': return pd.read_csv(filename, low_memory=False).reset_index().drop(["index", "Unnamed: 0"], axis=1, errors="ignore") elif file_type == 'xlsx': return pd.read_excel(filename).reset_index().drop(["index", "Unnamed: 0"], axis=1, errors="ignore") elif file_type == 'parquet': return pd.read_parquet(filename).reset_index().drop(["index", "Unnamed: 0"], axis=1, errors="ignore") def put_columns_in_df(in_file, in_bm25_column): ''' When file is loaded, update the column dropdown choices and change 'clean data' dropdown option to 'no'. ''' file_list = [string.name for string in in_file] print(file_list) data_file_names = [string for string in file_list if "tokenised" not in string] new_choices = [] concat_choices = [] df = read_file(data_file_names[0]) new_choices = list(df.columns) #print(new_choices) concat_choices.extend(new_choices) return gr.Dropdown(choices=concat_choices), gr.Dropdown(value="No", choices = ["Yes", "No"]),\ gr.Dropdown(choices=concat_choices) def put_columns_in_join_df(in_file, in_bm25_column): ''' When file is loaded, update the column dropdown choices and change 'clean data' dropdown option to 'no'. ''' print("in_bm25_column") new_choices = [] concat_choices = [] df = read_file(in_file.name) new_choices = list(df.columns) print(new_choices) concat_choices.extend(new_choices) return gr.Dropdown(choices=concat_choices) def dummy_function(gradio_component): """ A dummy function that exists just so that dropdown updates work correctly. """ return None def display_info(info_component): gr.Info(info_component) def docs_to_chroma_save(docs_out, embeddings = embeddings, progress=gr.Progress()): ''' Takes a Langchain document class and saves it into a Chroma sqlite file. ''' print(f"> Total split documents: {len(docs_out)}") #print(docs_out) page_contents = [doc.page_content for doc in docs_out] page_meta = [doc.metadata for doc in docs_out] ids_range = range(0,len(page_contents)) ids = [str(element) for element in ids_range] tic = time.perf_counter() #embeddings_list = [] #for page in progress.tqdm(page_contents, desc = "Preparing search index", unit = "rows"): # embeddings_list.append(embeddings.encode(sentences=page, max_length=1024).tolist()) embeddings_list = embeddings.encode(sentences=page_contents, max_length=256, show_progress_bar = True, batch_size = 32).tolist() # For Jina embeddings #embeddings_list = embeddings.encode(sentences=page_contents, normalize_embeddings=True).tolist() # For BGE embeddings #embeddings_list = embeddings.encode(sentences=page_contents).tolist() # For minilm toc = time.perf_counter() time_out = f"The embedding took {toc - tic:0.1f} seconds" #pd.Series(embeddings_list).to_csv("embeddings_out.csv") # Jina tiny # This takes about 300 seconds for 240,000 records = 800 / second, 1024 max length # For 50k records: # 61 seconds at 1024 max length # 55 seconds at 512 max length # 43 seconds at 256 max length # 31 seconds at 128 max length # The embedding took 1372.5 seconds at 256 max length for 655,020 case notes # BGE small # 96 seconds for 50k records at 512 length # all-MiniLM-L6-v2 # 42.5 seconds at (256?) max length # paraphrase-MiniLM-L3-v2 # 22 seconds for 128 max length print(time_out) chroma_tic = time.perf_counter() # Create a new Chroma collection to store the documents and metadata. We don't need to specify an embedding fuction, and the default will be used. client = chromadb.PersistentClient(path="./last_year", settings=Settings( anonymized_telemetry=False)) try: print("Deleting existing collection.") #collection = client.get_collection(name="my_collection") client.delete_collection(name="my_collection") print("Creating new collection.") collection = client.create_collection(name="my_collection") except: print("Creating new collection.") collection = client.create_collection(name="my_collection") # Match batch size is about 40,000, so add that amount in a loop def create_batch_ranges(in_list, batch_size=40000): total_rows = len(in_list) ranges = [] for start in range(0, total_rows, batch_size): end = min(start + batch_size, total_rows) ranges.append(range(start, end)) return ranges batch_ranges = create_batch_ranges(embeddings_list) print(batch_ranges) for row_range in progress.tqdm(batch_ranges, desc = "Creating vector database", unit = "batches of 40,000 rows"): collection.add( documents = page_contents[row_range[0]:row_range[-1]], embeddings = embeddings_list[row_range[0]:row_range[-1]], metadatas = page_meta[row_range[0]:row_range[-1]], ids = ids[row_range[0]:row_range[-1]]) print(collection.count()) #chatf.vectorstore = vectorstore_func chroma_toc = time.perf_counter() chroma_time_out = f"Loading to Chroma db took {chroma_toc - chroma_tic:0.1f} seconds" print(chroma_time_out) out_message = "Document processing complete" return out_message, collection def docs_to_np_array(docs_out, in_file, embeddings = embeddings, progress=gr.Progress()): ''' Takes a Langchain document class and saves it into a Chroma sqlite file. ''' print(f"> Total split documents: {len(docs_out)}") #print(docs_out) page_contents = [doc.page_content for doc in docs_out] ## Load in pre-embedded file if exists file_list = [string.name for string in in_file] print(file_list) embeddings_file_names = [string for string in file_list if "embedding" in string] if embeddings_file_names: embeddings_out = np.load(embeddings_file_names[0]) print("embeddings loaded: ", embeddings_out) if not embeddings_file_names: tic = time.perf_counter() #embeddings_list = [] #for page in progress.tqdm(page_contents, desc = "Preparing search index", unit = "rows"): # embeddings_list.append(embeddings.encode(sentences=page, max_length=1024).tolist()) embeddings_out = embeddings.encode(sentences=page_contents, max_length=1024, show_progress_bar = True, batch_size = 32) # For Jina embeddings #embeddings_list = embeddings.encode(sentences=page_contents, normalize_embeddings=True).tolist() # For BGE embeddings #embeddings_list = embeddings.encode(sentences=page_contents).tolist() # For minilm toc = time.perf_counter() time_out = f"The embedding took {toc - tic:0.1f} seconds" np.savez_compressed('semantic_search_embeddings.npz', embeddings_out) out_message = "Document processing complete. Ready to search." print(out_message) return out_message, embeddings_out def process_data_from_scores_df(df_docs, in_join_file, out_passages, vec_score_cut_off, vec_weight, orig_df_col, in_join_column, search_df_join_column): def create_docs_keep_from_df(df): dict_out = {'ids' : [df['ids']], 'documents': [df['documents']], 'metadatas': [df['metadatas']], 'distances': [round(df['distances'].astype(float), 3)], 'embeddings': None } return dict_out # Prepare the DataFrame by transposing #df_docs = df#.apply(lambda x: x.explode()).reset_index(drop=True) # Keep only documents with a certain score #print(df_docs) docs_scores = df_docs["distances"] #.astype(float) # Only keep sources that are sufficiently relevant (i.e. similarity search score below threshold below) score_more_limit = df_docs.loc[docs_scores > vec_score_cut_off, :] #docs_keep = create_docs_keep_from_df(score_more_limit) #list(compress(docs, score_more_limit)) #print(docs_keep) if score_more_limit.empty: return 'No result found!', None # Only keep sources that are at least 100 characters long docs_len = score_more_limit["documents"].str.len() >= 100 #print(docs_len) length_more_limit = score_more_limit.loc[docs_len == True, :] #pd.Series(docs_len) >= 100 #docs_keep = create_docs_keep_from_df(length_more_limit) #list(compress(docs_keep, length_more_limit)) #print(length_more_limit) if length_more_limit.empty: return 'No result found!', None length_more_limit['ids'] = length_more_limit['ids'].astype(int) #length_more_limit.to_csv("length_more_limit.csv", index = None) # Explode the 'metadatas' dictionary into separate columns df_metadata_expanded = length_more_limit['metadatas'].apply(pd.Series) #print(length_more_limit) #print(df_metadata_expanded) # Concatenate the original DataFrame with the expanded metadata DataFrame results_df_out = pd.concat([length_more_limit.drop('metadatas', axis=1), df_metadata_expanded], axis=1) results_df_out = results_df_out.rename(columns={"documents":orig_df_col}) results_df_out = results_df_out.drop(["page_section", "row", "source", "id"], axis=1, errors="ignore") results_df_out['distances'] = round(results_df_out['distances'].astype(float), 3) # Join back to original df # results_df_out = orig_df.merge(length_more_limit[['ids', 'distances']], left_index = True, right_on = "ids", how="inner").sort_values("distances") # Join on additional files if in_join_file: join_filename = in_join_file.name # Import data join_df = read_file(join_filename) join_df[in_join_column] = join_df[in_join_column].astype(str).str.replace("\.0$","", regex=True) # Duplicates dropped so as not to expand out dataframe join_df = join_df.drop_duplicates(in_join_column) results_df_out[search_df_join_column] = results_df_out[search_df_join_column].astype(str).str.replace("\.0$","", regex=True) results_df_out = results_df_out.merge(join_df,left_on=search_df_join_column, right_on=in_join_column, how="left").drop(in_join_column, axis=1) return results_df_out def jina_simple_retrieval(new_question_kworded, vectorstore, docs, orig_df_col:str, k_val:int, out_passages:int, vec_score_cut_off:float, vec_weight:float, in_join_file = None, in_join_column = None, search_df_join_column = None, device = torch_device, embeddings = embeddings, progress=gr.Progress()): # ,vectorstore, embeddings print("vectorstore loaded: ", vectorstore) # Convert it to a PyTorch tensor and transfer to GPU vectorstore_tensor = tensor(vectorstore).to(device) # Load the sentence transformer model and move it to GPU embeddings = embeddings.to(device) # Encode the query using the sentence transformer and convert to a PyTorch tensor query = embeddings.encode(new_question_kworded) query_tensor = tensor(query).to(device) if query_tensor.dim() == 1: query_tensor = query_tensor.unsqueeze(0) # Reshape to 2D with one row # Normalize the query tensor and vectorstore tensor query_norm = query_tensor / query_tensor.norm(dim=1, keepdim=True) vectorstore_norm = vectorstore_tensor / vectorstore_tensor.norm(dim=1, keepdim=True) # Calculate cosine similarities (batch processing) cosine_similarities = mm(query_norm, vectorstore_norm.T) # Flatten the tensor to a 1D array cosine_similarities = cosine_similarities.flatten() # Convert to a NumPy array if it's still a PyTorch tensor cosine_similarities = cosine_similarities.cpu().numpy() # Create a Pandas Series cosine_similarities_series = pd.Series(cosine_similarities) # Pull out relevent info from docs page_contents = [doc.page_content for doc in docs] page_meta = [doc.metadata for doc in docs] ids_range = range(0,len(page_contents)) ids = [str(element) for element in ids_range] df_docs = pd.DataFrame(data={"ids": ids, "documents": page_contents, "metadatas":page_meta, "distances":cosine_similarities_series}).sort_values("distances", ascending=False).iloc[0:k_val,:] results_df_out = process_data_from_scores_df(df_docs, in_join_file, out_passages, vec_score_cut_off, vec_weight, orig_df_col, in_join_column, search_df_join_column) results_df_name = "semantic_search_result.csv" results_df_out.to_csv(results_df_name, index= None) results_first_text = results_df_out.iloc[0, 1] return results_first_text, results_df_name def chroma_retrieval(new_question_kworded:str, vectorstore, docs, orig_df_col:str, k_val:int, out_passages:int, vec_score_cut_off:float, vec_weight:float, in_join_file = None, in_join_column = None, search_df_join_column = None): # ,vectorstore, embeddings query = embeddings.encode(new_question_kworded).tolist() docs = vectorstore.query( query_embeddings=query, n_results= k_val # No practical limit on number of responses returned #where={"metadata_field": "is_equal_to_this"}, #where_document={"$contains":"search_string"} ) df_docs = pd.DataFrame(data={'ids': docs['ids'][0], 'documents': docs['documents'][0], 'metadatas':docs['metadatas'][0], 'distances':docs['distances'][0]#, #'embeddings': docs['embeddings'] }) results_df_out = process_data_from_scores_df(df_docs, in_join_file, out_passages, vec_score_cut_off, vec_weight, orig_df_col, in_join_column, search_df_join_column) results_df_name = "semantic_search_result.csv" results_df_out.to_csv(results_df_name, index= None) results_first_text = results_df_out[orig_df_col].iloc[0] return results_first_text, results_df_name ## Gradio app - BM25 search block = gr.Blocks(theme = gr.themes.Base()) with block: ingest_text = gr.State() ingest_metadata = gr.State() ingest_docs = gr.State() vectorstore_state = gr.State() # globals()["vectorstore"] embeddings_state = gr.State() # globals()["embeddings"] k_val = gr.State(9999) out_passages = gr.State(9999) vec_score_cut_off = gr.State(0.7) vec_weight = gr.State(1) docs_keep_as_doc_state = gr.State() doc_df_state = gr.State() docs_keep_out_state = gr.State() corpus_state = gr.State() data_state = gr.State(pd.DataFrame()) in_k1_info = gr.State("""k1: Constant used for influencing the term frequency saturation. After saturation is reached, additional presence for the term adds a significantly less additional score. According to [1]_, experiments suggest that 1.2 < k1 < 2 yields reasonably good results, although the optimal value depends on factors such as the type of documents or queries. Information taken from https://github.com/Inspirateur/Fast-BM25""") in_b_info = gr.State("""b: Constant used for influencing the effects of different document lengths relative to average document length. When b is bigger, lengthier documents (compared to average) have more impact on its effect. According to [1]_, experiments suggest that 0.5 < b < 0.8 yields reasonably good results, although the optimal value depends on factors such as the type of documents or queries. Information taken from https://github.com/Inspirateur/Fast-BM25""") in_alpha_info = gr.State("""alpha: IDF cutoff, terms with a lower idf score than alpha will be dropped. A higher alpha will lower the accuracy of BM25 but increase performance. Information taken from https://github.com/Inspirateur/Fast-BM25""") in_no_search_info = gr.State("""Search results number: Maximum number of search results that will be returned. Bear in mind that if the alpha value is greater than the minimum, common words will be removed from the dataset, and so the number of search results returned may be lower than this value.""") in_clean_info = gr.State("""Clean text: Clean the input text and search query. The function will try to remove email components and tags, and then will 'stem' the words. I.e. it will remove the endings of words (e.g. smashed becomes smash) so that the search engine is looking for the common 'core' of words between the query and dataset.""") gr.Markdown( """ # Fast text search Enter a text query below to search through a text data column and find relevant terms. It will only find terms containing the exact text you enter. Your data should contain at least 20 entries for the search to consistently return results. """) with gr.Tab(label="Keyword search"): with gr.Row(): current_source = gr.Textbox(label="Current data source(s)", value="None") with gr.Accordion(label = "Load in data", open=True): in_bm25_file = gr.File(label="Upload your search data here", file_count= 'multiple', file_types = ['.parquet', '.csv']) with gr.Row(): in_bm25_column = gr.Dropdown(label="Enter the name of the text column in the data file to search") load_bm25_data_button = gr.Button(value="Load data") with gr.Row(): load_finished_message = gr.Textbox(label="Load progress", scale = 2) with gr.Accordion(label = "Search data", open=True): with gr.Row(): keyword_query = gr.Textbox(label="Enter your search term") mod_query = gr.Textbox(label="Cleaned search term (the terms that are passed to the search engine)") keyword_search_button = gr.Button(value="Search text") with gr.Row(): output_single_text = gr.Textbox(label="Top result") output_file = gr.File(label="File output") with gr.Tab("Fuzzy/semantic search"): with gr.Row(): current_source_semantic = gr.Textbox(label="Current data source(s)", value="None") with gr.Accordion("Load in data", open = True): in_semantic_file = gr.File(label="Upload data file for semantic search", file_count= 'multiple', file_types = ['.parquet', '.csv', '.npy', '.npz']) with gr.Row(): in_semantic_column = gr.Dropdown(label="Enter the name of the text column in the data file to search") load_semantic_data_button = gr.Button(value="Load in data file", variant="secondary") ingest_embed_out = gr.Textbox(label="File/web page preparation progress") semantic_query = gr.Textbox(label="Enter semantic search query here") semantic_submit = gr.Button(value="Start semantic search", variant="secondary", scale = 1) with gr.Row(): semantic_output_single_text = gr.Textbox(label="Top result") semantic_output_file = gr.File(label="File output") with gr.Tab(label="Advanced options"): with gr.Accordion(label="Data load / save options", open = False): #with gr.Row(): in_clean_data = gr.Dropdown(label = "Clean text during load (remove tags, stem words). This will take some time!", value="No", choices=["Yes", "No"]) #save_clean_data_button = gr.Button(value = "Save loaded data to file", scale = 1) with gr.Accordion(label="Search options", open = False): with gr.Row(): in_k1 = gr.Slider(label = "k1 value", value = 1.5, minimum = 0.1, maximum = 5, step = 0.1, scale = 3) in_k1_button = gr.Button(value = "k1 value info", scale = 1) with gr.Row(): in_b = gr.Slider(label = "b value", value = 0.75, minimum = 0.1, maximum = 5, step = 0.05, scale = 3) in_b_button = gr.Button(value = "b value info", scale = 1) with gr.Row(): in_alpha = gr.Slider(label = "alpha value / IDF cutoff", value = -5, minimum = -5, maximum = 10, step = 1, scale = 3) in_alpha_button = gr.Button(value = "alpha value info", scale = 1) with gr.Row(): in_no_search_results = gr.Slider(label="Maximum number of search results to return", value = 100000, minimum=10, maximum=100000, step=10, scale = 3) in_no_search_results_button = gr.Button(value = "Search results number info", scale = 1) with gr.Row(): in_search_param_button = gr.Button(value="Load search parameters (Need to click this if you changed anything above)") with gr.Accordion(label = "Join on additional dataframes to results", open = False): in_join_file = gr.File(label="Upload your data to join here") in_join_column = gr.Dropdown(label="Column to join in new data frame") search_df_join_column = gr.Dropdown(label="Column to join in search data frame") in_search_param_button.click(fn=prepare_bm25, inputs=[corpus_state, in_k1, in_b, in_alpha], outputs=[load_finished_message]) # --- in_k1_button.click(display_info, inputs=in_k1_info) in_b_button.click(display_info, inputs=in_b_info) in_alpha_button.click(display_info, inputs=in_alpha_info) in_no_search_results_button.click(display_info, inputs=in_no_search_info) ### BM25 SEARCH ### # Update dropdowns upon initial file load in_bm25_file.upload(put_columns_in_df, inputs=[in_bm25_file, in_bm25_column], outputs=[in_bm25_column, in_clean_data, search_df_join_column]) in_join_file.upload(put_columns_in_join_df, inputs=[in_join_file, in_join_column], outputs=[in_join_column]) # Load in BM25 data load_bm25_data_button.click(fn=prepare_input_data, inputs=[in_bm25_file, in_bm25_column, in_clean_data], outputs=[corpus_state, load_finished_message, data_state, output_file]).\ then(fn=prepare_bm25, inputs=[corpus_state, in_k1, in_b, in_alpha], outputs=[load_finished_message]).\ then(fn=put_columns_in_df, inputs=[in_bm25_file, in_bm25_column], outputs=[in_bm25_column, in_clean_data, search_df_join_column]) # BM25 search functions on click or enter keyword_search_button.click(fn=bm25_search, inputs=[in_query, in_no_search_results, data_state, in_bm25_column, in_clean_data, in_join_file, in_join_column, search_df_join_column], outputs=[output_single_text, output_file, mod_query], api_name="search") keyword_query.submit(fn=bm25_search, inputs=[in_query, in_no_search_results, data_state, in_bm25_column, in_clean_data, in_join_file, in_join_column, search_df_join_column], outputs=[output_single_text, output_file, mod_query]) ### SEMANTIC SEARCH ### # Load in a csv/excel file for semantic search in_semantic_file.upload(put_columns_in_df, inputs=[in_semantic_file, in_semantic_column], outputs=[in_semantic_column, in_clean_data, search_df_join_column]) load_semantic_data_button.click(ing.parse_csv_or_excel, inputs=[in_semantic_file, in_semantic_column], outputs=[ingest_text, current_source_semantic, ingest_embed_out]).\ then(ing.csv_excel_text_to_docs, inputs=[ingest_text, in_semantic_column], outputs=[ingest_docs, ingest_embed_out]).\ then(docs_to_np_array, inputs=[ingest_docs, in_semantic_file], outputs=[ingest_embed_out, vectorstore_state]) # Semantic search query semantic_submit.click(jina_simple_retrieval, inputs=[semantic_query, vectorstore_state, ingest_docs, in_semantic_column, k_val, out_passages, vec_score_cut_off, vec_weight, in_join_file, in_join_column, search_df_join_column], outputs=[semantic_output_single_text, semantic_output_file], api_name="semantic") semantic_query.submit(jina_simple_retrieval, inputs=[semantic_query, vectorstore_state, ingest_docs, in_semantic_column, k_val, out_passages, vec_score_cut_off, vec_weight, in_join_file, in_join_column, search_df_join_column], outputs=[semantic_output_single_text, semantic_output_file], api_name="semantic") # Dummy functions just to get dropdowns to work correctly with Gradio 3.50 in_bm25_column.change(dummy_function, in_bm25_column, None) search_df_join_column.change(dummy_function, search_df_join_column, None) in_join_column.change(dummy_function, in_join_column, None) in_semantic_column.change(dummy_function, in_join_column, None) block.queue().launch(debug=True)