# Install/ import packages import time import re import ast import gzip import pandas as pd import gradio as gr import pickle from typing import Type, List, Literal #from langchain.text_splitter import RecursiveCharacterTextSplitter from pydantic import BaseModel, Field # Creating an alias for pandas DataFrame using Type PandasDataFrame = Type[pd.DataFrame] class Document(BaseModel): """Class for storing a piece of text and associated metadata. Implementation adapted from Langchain code: https://github.com/langchain-ai/langchain/blob/master/libs/core/langchain_core/documents/base.py""" page_content: str """String text.""" metadata: dict = Field(default_factory=dict) """Arbitrary metadata about the page content (e.g., source, relationships to other documents, etc.). """ type: Literal["Document"] = "Document" # Constants for chunking - not currently used split_strat = ["\n\n", "\n", ". ", "! ", "? "] chunk_size = 512 chunk_overlap = 0 start_index = True from search_funcs.helper_functions import get_file_path_end_with_ext, detect_file_type, get_file_path_end, ensure_output_folder_exists from search_funcs.bm25_functions import save_prepared_bm25_data, output_folder from search_funcs.clean_funcs import initial_clean def parse_file_not_used(file_paths, text_column='text'): """ Accepts a list of file paths, determines each file's type based on its extension, and passes it to the relevant parsing function. Parameters: file_paths (list): List of file paths. text_column (str): Name of the column in CSV/Excel files that contains the text content. Returns: dict: A dictionary with file paths as keys and their parsed content (or error message) as values. """ if not isinstance(file_paths, list): raise ValueError("Expected a list of file paths.") extension_to_parser = { # '.pdf': parse_pdf, # '.docx': parse_docx, # '.txt': parse_txt, # '.html': parse_html, # '.htm': parse_html, # Considering both .html and .htm for HTML files '.csv': lambda file_path: parse_csv_or_excel(file_path, text_column), '.xlsx': lambda file_path: parse_csv_or_excel(file_path, text_column), '.parquet': lambda file_path: parse_csv_or_excel(file_path, text_column) } parsed_contents = {} file_names = [] for file_path in file_paths: file_extension = detect_file_type(file_path.name) if file_extension in extension_to_parser: parsed_contents[file_path.name] = extension_to_parser[file_extension](file_path.name) else: parsed_contents[file_path.name] = f"Unsupported file type: {file_extension}" filename_end = get_file_path_end_with_ext(file_path.name) file_names.append(filename_end) return parsed_contents, file_names def text_regex_clean(text): # Merge hyphenated words text = re.sub(r"(\w+)-\n(\w+)", r"\1\2", text) # If a double newline ends in a letter, add a full stop. text = re.sub(r'(?<=[a-zA-Z])\n\n', '.\n\n', text) # Fix newlines in the middle of sentences text = re.sub(r"(?= max_length or char in split_symbols: # Add the current chunk to the chunks list chunks.append(current_chunk) current_chunk = "" # Adding any remaining part of the string if current_chunk: chunks.append(current_chunk) return chunks def clean_line_breaks(text): # Replace \n and \r\n with a space return text.replace('\n', ' ').replace('\r', ' ').replace('\r\n', ' ') def parse_metadata(row): try: # Ensure the 'title' field is a string and clean line breaks #if 'TITLE' in row: # row['TITLE'] = clean_line_breaks(row['TITLE']) # Convert the row to a string if it's not already row_str = str(row) if not isinstance(row, str) else row row_str.replace('\n', ' ').replace('\r', ' ').replace('\r\n', ' ') # Parse the string metadata = ast.literal_eval(row_str) # Process metadata return metadata except SyntaxError as e: print(f"Failed to parse metadata: {row_str}") print(f"Error: {e}") # Handle the error or log it return None # or some default value def csv_excel_text_to_docs(df, in_file, text_column, clean = "No", return_intermediate_files = "No", chunk_size=None, progress=gr.Progress(track_tqdm=True)) -> List[Document]: """Converts a DataFrame's content to a list of dictionaries in the 'Document' format, containing page_content and associated metadata.""" ensure_output_folder_exists(output_folder) output_list = [] if not in_file: return None, "Please load in at least one file.", output_list progress(0, desc = "Loading in data") file_list = [string.name for string in in_file] data_file_names = [string for string in file_list if "tokenised" not in string and "npz" not in string.lower()] if not data_file_names: return doc_sections, "Please load in at least one csv/Excel/parquet data file.", output_list if not text_column: return None, "Please enter a column name to search" data_file_name = data_file_names[0] # Check if file is a document format, and explode out as needed if "prepared_docs" in data_file_name: print("Loading in documents from file.") doc_sections = df # Convert each element in the Series to a Document instance return doc_sections, "Finished preparing documents", output_list ingest_tic = time.perf_counter() doc_sections = [] df[text_column] = df[text_column].astype(str).str.strip() # Ensure column is a string column original_text_column = text_column if clean == "Yes": progress(0.1, desc = "Cleaning data") clean_tic = time.perf_counter() print("Starting data clean.") df_list = list(df[text_column]) df_list = initial_clean(df_list) # Save to file if you have cleaned the data. Text column has now been renamed with '_cleaned' at the send out_file_name, text_column, df = save_prepared_bm25_data(data_file_name, df_list, df, text_column) df[text_column] = df_list clean_toc = time.perf_counter() clean_time_out = f"Cleaning the text took {clean_toc - clean_tic:0.1f} seconds." print(clean_time_out) cols = [col for col in df.columns if col != original_text_column] df["metadata"] = combine_metadata_columns(df, cols) progress(0.3, desc = "Converting data to document format") # Create a list of Document objects doc_sections = [Document(page_content=row[text_column], metadata= parse_metadata(row["metadata"])) for index, row in progress.tqdm(df.iterrows(), desc = "Splitting up text", unit = "rows")] ingest_toc = time.perf_counter() ingest_time_out = f"Preparing documents took {ingest_toc - ingest_tic:0.1f} seconds" print(ingest_time_out) if return_intermediate_files == "Yes": progress(0.5, desc = "Saving prepared documents") data_file_out_name_no_ext = get_file_path_end(data_file_name) file_name = data_file_out_name_no_ext if clean == "No": out_doc_file_name = output_folder + file_name + "_prepared_docs.pkl.gz" with gzip.open(out_doc_file_name, 'wb') as file: pickle.dump(doc_sections, file) elif clean == "Yes": out_doc_file_name = output_folder + file_name + "_cleaned_prepared_docs.pkl.gz" with gzip.open(out_doc_file_name, 'wb') as file: pickle.dump(doc_sections, file) output_list.append(out_doc_file_name) print("Documents saved to file.") return doc_sections, "Finished preparing documents.", output_list def document_to_dataframe(documents): ''' Convert an object in document format to pandas dataframe ''' rows = [] for doc in documents: # Convert Document to dictionary and extract metadata doc_dict = doc.dict() metadata = doc_dict.pop('metadata') # Add the page_content and type to the metadata metadata['page_content'] = doc_dict['page_content'] metadata['type'] = doc_dict['type'] # Add to the list of rows rows.append(metadata) # Create a DataFrame from the list of rows df = pd.DataFrame(rows) return df