import time import ast import gzip import pandas as pd import gradio as gr import pickle from typing import Type, List, Literal from pydantic import BaseModel, Field # Creating an alias for pandas DataFrame using Type PandasDataFrame = Type[pd.DataFrame] PandasSeries = Type[pd.Series] class Document(BaseModel): """Class for storing a piece of text and associated metadata. Implementation adapted from Langchain code: https://github.com/langchain-ai/langchain/blob/master/libs/core/langchain_core/documents/base.py""" page_content: str """String text.""" metadata: dict = Field(default_factory=dict) """Arbitrary metadata about the page content (e.g., source, relationships to other documents, etc.). """ type: Literal["Document"] = "Document" from search_funcs.helper_functions import get_file_path_end, ensure_output_folder_exists from search_funcs.bm25_functions import save_prepared_bm25_data, output_folder from search_funcs.clean_funcs import initial_clean def combine_metadata_columns(df:PandasDataFrame, cols:List[str]) -> PandasSeries: ''' Construct a metadata column as a string version of a dictionary for later parsing. Parameters: - df (PandasDataFrame): Data frame of search data. - cols (List[str]): List of column names that will be included in the output metadata column. Returns: - PandasSeries: A series containing the metadata elements combined into a dictionary format as a string. ''' df['metadata'] = '{' df['blank_column'] = '' for n, col in enumerate(cols): df[col] = df[col].astype(str).str.replace('"',"'").str.replace('\n', ' ').str.replace('\r', ' ').str.replace('\r\n', ' ').str.cat(df['blank_column'].astype(str), sep="") df['metadata'] = df['metadata'] + '"' + cols[n] + '": "' + df[col] + '", ' df['metadata'] = (df['metadata'] + "}").str.replace(', }', '}').str.replace('", }"', '}') return df['metadata'] def clean_line_breaks(text:str): '''Replace \n and \r\n with a space''' return text.replace('\n', ' ').replace('\r', ' ').replace('\r\n', ' ') def parse_metadata(row): ''' Parse a string instance of a dictionary into a Python object. ''' try: # Ensure the 'title' field is a string and clean line breaks #if 'TITLE' in row: # row['TITLE'] = clean_line_breaks(row['TITLE']) # Convert the row to a string if it's not already row_str = str(row) if not isinstance(row, str) else row row_str.replace('\n', ' ').replace('\r', ' ').replace('\r\n', ' ') # Parse the string metadata = ast.literal_eval(row_str) # Process metadata return metadata except SyntaxError as e: print(f"Failed to parse metadata: {row_str}") print(f"Error: {e}") # Handle the error or log it return None # or some default value def csv_excel_text_to_docs(df:PandasDataFrame, in_file:List[str], text_column:str, clean:str = "No", return_intermediate_files:str = "No", progress=gr.Progress(track_tqdm=True)) -> tuple: """Converts a DataFrame's content to a list of dictionaries in the 'Document' format, containing page_content and associated metadata. Parameters: - df (PandasDataFrame): Data frame of search data. - in_file (List[str]): List of input file names. - text_column (str): The text column that will be searched. - clean (str): Whether the text is cleaned before searching. - return_intermediate_files (str): Whether intermediate processing files are saved to file. - progress (gr.Progress, optional): The progress tracker for the operation. Returns: - tuple: A tuple containing data outputs in a Document class format, an output message, and a list of output file paths. """ ensure_output_folder_exists(output_folder) output_list = [] if not in_file: return None, "Please load in at least one file.", output_list progress(0, desc = "Loading in data") file_list = [string.name for string in in_file] data_file_names = [string for string in file_list if "tokenised" not in string and "npz" not in string.lower()] if not data_file_names: return doc_sections, "Please load in at least one csv/Excel/parquet data file.", output_list if not text_column: return None, "Please enter a column name to search", output_list data_file_name = data_file_names[0] # Check if file is a document format, and explode out as needed if "prepared_docs" in data_file_name: print("Loading in documents from file.") doc_sections = df # Convert each element in the Series to a Document instance return doc_sections, "Finished preparing documents", output_list ingest_tic = time.perf_counter() doc_sections = [] df[text_column] = df[text_column].astype(str).str.strip() # Ensure column is a string column original_text_column = text_column if clean == "Yes": progress(0.1, desc = "Cleaning data") clean_tic = time.perf_counter() print("Starting data clean.") df_list = list(df[text_column]) df_list = initial_clean(df_list) # Save to file if you have cleaned the data. Text column has now been renamed with '_cleaned' at the send out_file_name, text_column, df = save_prepared_bm25_data(data_file_name, df_list, df, text_column) df[text_column] = df_list clean_toc = time.perf_counter() clean_time_out = f"Cleaning the text took {clean_toc - clean_tic:0.1f} seconds." print(clean_time_out) cols = [col for col in df.columns if col != original_text_column] df["metadata"] = combine_metadata_columns(df, cols) progress(0.3, desc = "Converting data to document format") # Create a list of Document objects doc_sections = [Document(page_content=row[text_column], metadata= parse_metadata(row["metadata"])) for index, row in progress.tqdm(df.iterrows(), desc = "Splitting up text", unit = "rows")] ingest_toc = time.perf_counter() ingest_time_out = f"Preparing documents took {ingest_toc - ingest_tic:0.1f} seconds" print(ingest_time_out) if return_intermediate_files == "Yes": progress(0.5, desc = "Saving prepared documents") data_file_out_name_no_ext = get_file_path_end(data_file_name) file_name = data_file_out_name_no_ext if clean == "No": out_doc_file_name = output_folder + file_name + "_prepared_docs.pkl.gz" with gzip.open(out_doc_file_name, 'wb') as file: pickle.dump(doc_sections, file) elif clean == "Yes": out_doc_file_name = output_folder + file_name + "_cleaned_prepared_docs.pkl.gz" with gzip.open(out_doc_file_name, 'wb') as file: pickle.dump(doc_sections, file) output_list.append(out_doc_file_name) print("Documents saved to file.") return doc_sections, "Finished preparing documents.", output_list