Spaces:
Sleeping
Sleeping
File size: 86,765 Bytes
dce6100 ed5f8c7 8235bbb 0ea8b9e ebf9010 7b345c3 a33b955 0ea8b9e 0f18146 0ea8b9e ed5f8c7 01c88c0 bc22fc4 ec98119 34bd97b a265560 ed5f8c7 641ff3e 0ea8b9e 93ac94f f0f9378 bde6e5b f0f9378 ec98119 bde6e5b 1d772de f0f9378 bde6e5b f0f9378 0ea8b9e bc4bdbd 1b13393 f0f9378 056204b f0f9378 641ff3e a770956 641ff3e bc22fc4 641ff3e 8652429 42180e4 eea5c07 ed5f8c7 cb349ad 4276db1 0ea8b9e eea5c07 dacc782 ed5f8c7 dacc782 ed5f8c7 0ea8b9e bc4bdbd dacc782 66e145d eea5c07 dacc782 66e145d dacc782 0ea8b9e cb349ad dacc782 0ea8b9e 66e145d 0ea8b9e 8235bbb 34addbf 0ea8b9e dacc782 8235bbb 0ea8b9e e2aae24 0ea8b9e 8235bbb 1d772de 0ea8b9e 4276db1 1d772de 66e145d 8235bbb 0ea8b9e 8235bbb cb349ad 8652429 ec98119 08a3ec3 dacc782 ec98119 dacc782 42180e4 ed5f8c7 0ea8b9e e2aae24 a770956 0ea8b9e 0e1a4a7 a770956 0ea8b9e 0e1a4a7 a770956 0ea8b9e 7b345c3 6319afc ed5f8c7 0ea8b9e 7b345c3 0ea8b9e ed5f8c7 ec98119 4276db1 0ea8b9e 4276db1 ed5f8c7 4276db1 1d772de a265560 ed5f8c7 0ea8b9e ed5f8c7 0ea8b9e a265560 ed5f8c7 8652429 bc22fc4 641ff3e 8235bbb 641ff3e 0ea8b9e 8235bbb 0ea8b9e 1b13393 0ea8b9e 7810536 1b13393 641ff3e a265560 0ea8b9e a265560 7810536 6319afc 0ea8b9e ed5f8c7 0ea8b9e ed5f8c7 0ea8b9e ed5f8c7 0ea8b9e 4276db1 ed5f8c7 0ea8b9e 4276db1 ed5f8c7 4276db1 641ff3e ed5f8c7 0ea8b9e eea5c07 641ff3e 8652429 bbf818d 8235bbb bbf818d 8652429 a265560 ebf9010 6319afc 4276db1 0ea8b9e 08a3ec3 ed5f8c7 66e145d ed5f8c7 66e145d ed5f8c7 66e145d ebf9010 1d772de ed5f8c7 08a3ec3 ed5f8c7 4276db1 0ea8b9e 4276db1 0ea8b9e 4276db1 ed5f8c7 6b28cfa bde6e5b 0ea8b9e a33b955 0ea8b9e a265560 8652429 a265560 7810536 0ea8b9e 7810536 01c88c0 1b13393 01c88c0 7810536 01c88c0 ff290e1 7810536 8c33828 7810536 01c88c0 bbf818d 7810536 8652429 bbf818d eea5c07 bbf818d 8c33828 a265560 8652429 a265560 1b13393 7810536 a770956 0e1a4a7 6ea0852 a770956 0e1a4a7 a770956 1b13393 a770956 0e1a4a7 66e145d 0ea8b9e a770956 1b13393 bde6e5b fcbaca7 bde6e5b 1b13393 0ea8b9e f0f9378 0ea8b9e f0f9378 7907ad4 391712c 7907ad4 1b13393 ff290e1 f0f9378 bde6e5b dacc782 0ea8b9e bde6e5b ed5f8c7 bde6e5b ed5f8c7 eea5c07 8652429 0ea8b9e ed5f8c7 0ea8b9e 4276db1 0ea8b9e ed5f8c7 0ea8b9e ed5f8c7 0ea8b9e 8652429 6319afc ed5f8c7 0ea8b9e 66e145d ed5f8c7 0ea8b9e eea5c07 ed5f8c7 0ea8b9e 6319afc eea5c07 4276db1 ed5f8c7 4276db1 a770956 ebf9010 1d772de 66e145d 0ea8b9e ed5f8c7 0ea8b9e eea5c07 ed5f8c7 ebf9010 ed5f8c7 01c88c0 0ea8b9e eea5c07 0ea8b9e 1d772de 3518b67 66e145d 1d772de 0ea8b9e 66e145d 0ea8b9e 66e145d 0ea8b9e 66e145d 0ea8b9e e2aae24 4276db1 a33b955 4276db1 6b28cfa 0ea8b9e ed5f8c7 6319afc 6b28cfa 0ea8b9e ed5f8c7 08a3ec3 6b28cfa 8652429 dacc782 8652429 0ea8b9e 01c88c0 0e1a4a7 01c88c0 0e1a4a7 08a3ec3 01c88c0 a265560 0ea8b9e a265560 a770956 a265560 a770956 bde6e5b 0e1a4a7 bde6e5b dacc782 a770956 8652429 34addbf ed5f8c7 641ff3e e4c7d3c 7b345c3 818efbc 6319afc e4c7d3c 6319afc e4c7d3c 390bef2 0ea8b9e 818efbc 0ea8b9e ed5f8c7 e4c7d3c ed5f8c7 e4c7d3c 0ea8b9e f6e6d80 ed5f8c7 8c33828 34bd97b ed5f8c7 08a3ec3 641ff3e 8c33828 34bd97b 0ea8b9e e2aae24 08a3ec3 8c33828 34bd97b 0ea8b9e 1d772de 08a3ec3 8c33828 34addbf 0ea8b9e b8e245f 0ea8b9e ed5f8c7 0ea8b9e ed5f8c7 0ea8b9e dea568f ed5f8c7 e5dfae7 ed5f8c7 e5dfae7 2bb3ff5 e5dfae7 dea568f e5dfae7 dea568f e5dfae7 bc22fc4 e5dfae7 ed5f8c7 e5dfae7 4276db1 8652429 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 |
import os
import logging
import pandas as pd
import gradio as gr
from gradio_image_annotation import image_annotator
from tools.config import OUTPUT_FOLDER, INPUT_FOLDER, RUN_DIRECT_MODE, MAX_QUEUE_SIZE, DEFAULT_CONCURRENCY_LIMIT, MAX_FILE_SIZE, GRADIO_SERVER_PORT, ROOT_PATH, GET_DEFAULT_ALLOW_LIST, ALLOW_LIST_PATH, S3_ALLOW_LIST_PATH, FEEDBACK_LOGS_FOLDER, ACCESS_LOGS_FOLDER, USAGE_LOGS_FOLDER, TESSERACT_FOLDER, POPPLER_FOLDER, REDACTION_LANGUAGE, GET_COST_CODES, COST_CODES_PATH, S3_COST_CODES_PATH, ENFORCE_COST_CODES, DISPLAY_FILE_NAMES_IN_LOGS, SHOW_COSTS, RUN_AWS_FUNCTIONS, DOCUMENT_REDACTION_BUCKET, SHOW_BULK_TEXTRACT_CALL_OPTIONS, TEXTRACT_BULK_ANALYSIS_BUCKET, TEXTRACT_BULK_ANALYSIS_INPUT_SUBFOLDER, TEXTRACT_BULK_ANALYSIS_OUTPUT_SUBFOLDER, SESSION_OUTPUT_FOLDER, LOAD_PREVIOUS_TEXTRACT_JOBS_S3, TEXTRACT_JOBS_S3_LOC, TEXTRACT_JOBS_LOCAL_LOC, HOST_NAME, DEFAULT_COST_CODE, OUTPUT_COST_CODES_PATH, OUTPUT_ALLOW_LIST_PATH
from tools.helper_functions import put_columns_in_df, get_connection_params, reveal_feedback_buttons, custom_regex_load, reset_state_vars, load_in_default_allow_list, tesseract_ocr_option, text_ocr_option, textract_option, local_pii_detector, aws_pii_detector, no_redaction_option, reset_review_vars, merge_csv_files, load_all_output_files, update_dataframe, check_for_existing_textract_file, load_in_default_cost_codes, enforce_cost_codes, calculate_aws_costs, calculate_time_taken, reset_base_dataframe, reset_ocr_base_dataframe, update_cost_code_dataframe_from_dropdown_select
from tools.aws_functions import upload_file_to_s3, download_file_from_s3
from tools.file_redaction import choose_and_run_redactor
from tools.file_conversion import prepare_image_or_pdf, get_input_file_names, convert_review_df_to_annotation_json
from tools.redaction_review import apply_redactions_to_review_df_and_files, update_all_page_annotation_object_based_on_previous_page, decrease_page, increase_page, update_annotator_object_and_filter_df, update_entities_df_recogniser_entities, update_entities_df_page, update_entities_df_text, df_select_callback, convert_df_to_xfdf, convert_xfdf_to_dataframe, reset_dropdowns, exclude_selected_items_from_redaction, undo_last_removal, update_selected_review_df_row_colour, update_all_entity_df_dropdowns, df_select_callback_cost, update_other_annotator_number_from_current, update_annotator_page_from_review_df, df_select_callback_ocr, df_select_callback_textract_api
from tools.data_anonymise import anonymise_data_files
from tools.auth import authenticate_user
from tools.load_spacy_model_custom_recognisers import custom_entities
from tools.custom_csvlogger import CSVLogger_custom
from tools.find_duplicate_pages import identify_similar_pages
from tools.textract_batch_call import analyse_document_with_textract_api, poll_bulk_textract_analysis_progress_and_download, load_in_textract_job_details, check_for_provided_job_id
# Suppress downcasting warnings
pd.set_option('future.no_silent_downcasting', True)
chosen_comprehend_entities = ['BANK_ACCOUNT_NUMBER','BANK_ROUTING','CREDIT_DEBIT_NUMBER','CREDIT_DEBIT_CVV','CREDIT_DEBIT_EXPIRY','PIN','EMAIL','ADDRESS','NAME','PHONE', 'PASSPORT_NUMBER','DRIVER_ID', 'USERNAME','PASSWORD', 'IP_ADDRESS','MAC_ADDRESS', 'LICENSE_PLATE','VEHICLE_IDENTIFICATION_NUMBER','UK_NATIONAL_INSURANCE_NUMBER', 'INTERNATIONAL_BANK_ACCOUNT_NUMBER','SWIFT_CODE','UK_NATIONAL_HEALTH_SERVICE_NUMBER']
full_comprehend_entity_list = ['BANK_ACCOUNT_NUMBER','BANK_ROUTING','CREDIT_DEBIT_NUMBER','CREDIT_DEBIT_CVV','CREDIT_DEBIT_EXPIRY','PIN','EMAIL','ADDRESS','NAME','PHONE','SSN','DATE_TIME','PASSPORT_NUMBER','DRIVER_ID','URL','AGE','USERNAME','PASSWORD','AWS_ACCESS_KEY','AWS_SECRET_KEY','IP_ADDRESS','MAC_ADDRESS','ALL','LICENSE_PLATE','VEHICLE_IDENTIFICATION_NUMBER','UK_NATIONAL_INSURANCE_NUMBER','CA_SOCIAL_INSURANCE_NUMBER','US_INDIVIDUAL_TAX_IDENTIFICATION_NUMBER','UK_UNIQUE_TAXPAYER_REFERENCE_NUMBER','IN_PERMANENT_ACCOUNT_NUMBER','IN_NREGA','INTERNATIONAL_BANK_ACCOUNT_NUMBER','SWIFT_CODE','UK_NATIONAL_HEALTH_SERVICE_NUMBER','CA_HEALTH_NUMBER','IN_AADHAAR','IN_VOTER_NUMBER', "CUSTOM_FUZZY"]
# Add custom spacy recognisers to the Comprehend list, so that local Spacy model can be used to pick up e.g. titles, streetnames, UK postcodes that are sometimes missed by comprehend
chosen_comprehend_entities.extend(custom_entities)
full_comprehend_entity_list.extend(custom_entities)
# Entities for local PII redaction option
chosen_redact_entities = ["TITLES", "PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "STREETNAME", "UKPOSTCODE", "CUSTOM"]
full_entity_list = ["TITLES", "PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "STREETNAME", "UKPOSTCODE", 'CREDIT_CARD', 'CRYPTO', 'DATE_TIME', 'IBAN_CODE', 'IP_ADDRESS', 'NRP', 'LOCATION', 'MEDICAL_LICENSE', 'URL', 'UK_NHS', 'CUSTOM', 'CUSTOM_FUZZY']
log_file_name = 'log.csv'
file_input_height = 200
if RUN_AWS_FUNCTIONS == "1":
default_ocr_val = textract_option
default_pii_detector = local_pii_detector
else:
default_ocr_val = text_ocr_option
default_pii_detector = local_pii_detector
# Create the gradio interface
app = gr.Blocks(theme = gr.themes.Base(), fill_width=True)
with app:
###
# STATE VARIABLES
###
# Pymupdf doc and all image annotations objects need to be stored as State objects as they do not have a standard Gradio component equivalent
pdf_doc_state = gr.State([])
all_image_annotations_state = gr.State([])
all_decision_process_table_state = gr.Dataframe(value=pd.DataFrame(), headers=None, col_count=0, row_count = (0, "dynamic"), label="all_decision_process_table", visible=False, type="pandas", wrap=True)
review_file_state = gr.Dataframe(value=pd.DataFrame(), headers=None, col_count=0, row_count = (0, "dynamic"), label="review_file_df", visible=False, type="pandas", wrap=True)
session_hash_state = gr.Textbox(label= "session_hash_state", value="", visible=False)
host_name_textbox = gr.Textbox(label= "host_name_textbox", value=HOST_NAME, visible=False)
s3_output_folder_state = gr.Textbox(label= "s3_output_folder_state", value="", visible=False)
session_output_folder_textbox = gr.Textbox(value = SESSION_OUTPUT_FOLDER, label="session_output_folder_textbox", visible=False)
output_folder_textbox = gr.Textbox(value = OUTPUT_FOLDER, label="output_folder_textbox", visible=False)
input_folder_textbox = gr.Textbox(value = INPUT_FOLDER, label="input_folder_textbox", visible=False)
first_loop_state = gr.Checkbox(label="first_loop_state", value=True, visible=False)
second_loop_state = gr.Checkbox(label="second_loop_state", value=False, visible=False)
do_not_save_pdf_state = gr.Checkbox(label="do_not_save_pdf_state", value=False, visible=False)
save_pdf_state = gr.Checkbox(label="save_pdf_state", value=True, visible=False)
prepared_pdf_state = gr.Dropdown(label = "prepared_pdf_list", value="", allow_custom_value=True,visible=False)
document_cropboxes = gr.Dropdown(label = "document_cropboxes", value="", allow_custom_value=True,visible=False)
page_sizes = gr.Dropdown(label = "page_sizes", value="", allow_custom_value=True, visible=False)
images_pdf_state = gr.Dropdown(label = "images_pdf_list", value="", allow_custom_value=True,visible=False)
all_img_details_state = gr.State([])
output_image_files_state = gr.Dropdown(label = "output_image_files_list", value="", allow_custom_value=True,visible=False)
output_file_list_state = gr.Dropdown(label = "output_file_list", value="", allow_custom_value=True,visible=False)
text_output_file_list_state = gr.Dropdown(label = "text_output_file_list", value="", allow_custom_value=True,visible=False)
log_files_output_list_state = gr.Dropdown(label = "log_files_output_list", value="", allow_custom_value=True,visible=False)
duplication_file_path_outputs_list_state = gr.Dropdown(label = "duplication_file_path_outputs_list", value=[], multiselect=True, allow_custom_value=True,visible=False)
# Backup versions of these objects in case you make a mistake
backup_review_state = gr.Dataframe(visible=False)
backup_image_annotations_state = gr.State([])
backup_recogniser_entity_dataframe_base = gr.Dataframe(visible=False)
# Logging state
feedback_logs_state = gr.Textbox(label= "feedback_logs_state", value=FEEDBACK_LOGS_FOLDER + log_file_name, visible=False)
feedback_s3_logs_loc_state = gr.Textbox(label= "feedback_s3_logs_loc_state", value=FEEDBACK_LOGS_FOLDER, visible=False)
access_logs_state = gr.Textbox(label= "access_logs_state", value=ACCESS_LOGS_FOLDER + log_file_name, visible=False)
access_s3_logs_loc_state = gr.Textbox(label= "access_s3_logs_loc_state", value=ACCESS_LOGS_FOLDER, visible=False)
usage_logs_state = gr.Textbox(label= "usage_logs_state", value=USAGE_LOGS_FOLDER + log_file_name, visible=False)
usage_s3_logs_loc_state = gr.Textbox(label= "usage_s3_logs_loc_state", value=USAGE_LOGS_FOLDER, visible=False)
session_hash_textbox = gr.Textbox(label= "session_hash_textbox", value="", visible=False)
textract_metadata_textbox = gr.Textbox(label = "textract_metadata_textbox", value="", visible=False)
comprehend_query_number = gr.Number(label = "comprehend_query_number", value=0, visible=False)
textract_query_number = gr.Number(label = "textract_query_number", value=0, visible=False)
doc_full_file_name_textbox = gr.Textbox(label = "doc_full_file_name_textbox", value="", visible=False)
doc_file_name_no_extension_textbox = gr.Textbox(label = "doc_full_file_name_textbox", value="", visible=False)
blank_doc_file_name_no_extension_textbox_for_logs = gr.Textbox(label = "doc_full_file_name_textbox", value="", visible=False) # Left blank for when user does not want to report file names
doc_file_name_with_extension_textbox = gr.Textbox(label = "doc_file_name_with_extension_textbox", value="", visible=False)
doc_file_name_textbox_list = gr.Dropdown(label = "doc_file_name_textbox_list", value="", allow_custom_value=True,visible=False)
latest_review_file_path = gr.Textbox(label = "latest_review_file_path", value="", visible=False) # Latest review file path output from redaction
latest_ocr_file_path = gr.Textbox(label = "latest_ocr_file_path", value="", visible=False) # Latest ocr file path output from text extraction
data_full_file_name_textbox = gr.Textbox(label = "data_full_file_name_textbox", value="", visible=False)
data_file_name_no_extension_textbox = gr.Textbox(label = "data_full_file_name_textbox", value="", visible=False)
data_file_name_with_extension_textbox = gr.Textbox(label = "data_file_name_with_extension_textbox", value="", visible=False)
data_file_name_textbox_list = gr.Dropdown(label = "data_file_name_textbox_list", value="", allow_custom_value=True,visible=False)
# Constants just to use with the review dropdowns for filtering by various columns
label_name_const = gr.Textbox(label="label_name_const", value="label", visible=False)
text_name_const = gr.Textbox(label="text_name_const", value="text", visible=False)
page_name_const = gr.Textbox(label="page_name_const", value="page", visible=False)
actual_time_taken_number = gr.Number(label = "actual_time_taken_number", value=0.0, precision=1, visible=False) # This keeps track of the time taken to redact files for logging purposes.
annotate_previous_page = gr.Number(value=0, label="Previous page", precision=0, visible=False) # Keeps track of the last page that the annotator was on
s3_logs_output_textbox = gr.Textbox(label="Feedback submission logs", visible=False)
## Annotator zoom value
annotator_zoom_number = gr.Number(label = "Current annotator zoom level", value=100, precision=0, visible=False)
zoom_true_bool = gr.Checkbox(label="zoom_true_bool", value=True, visible=False)
zoom_false_bool = gr.Checkbox(label="zoom_false_bool", value=False, visible=False)
clear_all_page_redactions = gr.Checkbox(label="clear_all_page_redactions", value=True, visible=False)
prepare_for_review_bool = gr.Checkbox(label="prepare_for_review_bool", value=True, visible=False)
prepare_for_review_bool_false = gr.Checkbox(label="prepare_for_review_bool_false", value=False, visible=False)
prepare_images_bool_false = gr.Checkbox(label="prepare_images_bool_false", value=False, visible=False)
## Settings page variables
default_deny_list_file_name = "default_deny_list.csv"
default_deny_list_loc = OUTPUT_FOLDER + "/" + default_deny_list_file_name
in_deny_list_text_in = gr.Textbox(value="deny_list", visible=False)
fully_redacted_list_file_name = "default_fully_redacted_list.csv"
fully_redacted_list_loc = OUTPUT_FOLDER + "/" + fully_redacted_list_file_name
in_fully_redacted_text_in = gr.Textbox(value="fully_redacted_pages_list", visible=False)
# S3 settings for default allow list load
s3_default_bucket = gr.Textbox(label = "Default S3 bucket", value=DOCUMENT_REDACTION_BUCKET, visible=False)
s3_default_allow_list_file = gr.Textbox(label = "Default allow list file", value=S3_ALLOW_LIST_PATH, visible=False)
default_allow_list_output_folder_location = gr.Textbox(label = "Output default allow list location", value=OUTPUT_ALLOW_LIST_PATH, visible=False)
s3_bulk_textract_default_bucket = gr.Textbox(label = "Default Textract bulk S3 bucket", value=TEXTRACT_BULK_ANALYSIS_BUCKET, visible=False)
s3_bulk_textract_input_subfolder = gr.Textbox(label = "Default Textract bulk S3 input folder", value=TEXTRACT_BULK_ANALYSIS_INPUT_SUBFOLDER, visible=False)
s3_bulk_textract_output_subfolder = gr.Textbox(label = "Default Textract bulk S3 output folder", value=TEXTRACT_BULK_ANALYSIS_OUTPUT_SUBFOLDER, visible=False)
successful_textract_api_call_number = gr.Number(precision=0, value=0, visible=False)
load_s3_bulk_textract_logs_bool = gr.Textbox(label = "Load Textract logs or not", value=LOAD_PREVIOUS_TEXTRACT_JOBS_S3, visible=False)
s3_bulk_textract_logs_subfolder = gr.Textbox(label = "Default Textract bulk S3 input folder", value=TEXTRACT_JOBS_S3_LOC, visible=False)
local_bulk_textract_logs_subfolder = gr.Textbox(label = "Default Textract bulk S3 output folder", value=TEXTRACT_JOBS_LOCAL_LOC, visible=False)
s3_default_cost_codes_file = gr.Textbox(label = "Default cost centre file", value=S3_COST_CODES_PATH, visible=False)
default_cost_codes_output_folder_location = gr.Textbox(label = "Output default cost centre location", value=OUTPUT_COST_CODES_PATH, visible=False)
enforce_cost_code_textbox = gr.Textbox(label = "Enforce cost code textbox", value=ENFORCE_COST_CODES, visible=False)
default_cost_code_textbox = gr.Textbox(label = "Default cost code textbox", value=DEFAULT_COST_CODE, visible=False)
# Base tables that are not modified subsequent to load
recogniser_entity_dataframe_base = gr.Dataframe(pd.DataFrame(data={"page":[], "label":[], "text":[]}), col_count=3, type="pandas", visible=False, label="recogniser_entity_dataframe_base", show_search="filter", headers=["page", "label", "text"], show_fullscreen_button=True, wrap=True)
all_line_level_ocr_results_df_base = gr.Dataframe(value=pd.DataFrame(), headers=["page", "text"], col_count=(2, 'fixed'), row_count = (0, "dynamic"), label="All OCR results", type="pandas", wrap=True, show_fullscreen_button=True, show_search='filter', show_label=False, show_copy_button=True, visible=False)
all_line_level_ocr_results_df_placeholder = gr.Dataframe(visible=False)
cost_code_dataframe_base = gr.Dataframe(value=pd.DataFrame(), row_count = (0, "dynamic"), label="Cost codes", type="pandas", interactive=True, show_fullscreen_button=True, show_copy_button=True, show_search='filter', wrap=True, max_height=200, visible=False)
# Duplicate page detection
in_duplicate_pages_text = gr.Textbox(label="in_duplicate_pages_text", visible=False)
duplicate_pages_df = gr.Dataframe(value=pd.DataFrame(), headers=None, col_count=0, row_count = (0, "dynamic"), label="duplicate_pages_df", visible=False, type="pandas", wrap=True)
# Tracking variables for current page (not visible)
current_loop_page_number = gr.Number(value=0,precision=0, interactive=False, label = "Last redacted page in document", visible=False)
page_break_return = gr.Checkbox(value = False, label="Page break reached", visible=False)
# Placeholders for elements that may be made visible later below depending on environment variables
cost_code_dataframe = gr.Dataframe(value=pd.DataFrame(), type="pandas", visible=False, wrap=True)
cost_code_choice_drop = gr.Dropdown(value=DEFAULT_COST_CODE, label="Choose cost code for analysis. Please contact Finance if you can't find your cost code in the given list.", choices=[DEFAULT_COST_CODE], allow_custom_value=False, visible=False)
textract_output_found_checkbox = gr.Checkbox(value= False, label="Existing Textract output file found", interactive=False, visible=False)
total_pdf_page_count = gr.Number(label = "Total page count", value=0, visible=False)
estimated_aws_costs_number = gr.Number(label = "Approximate AWS Textract and/or Comprehend cost ($)", value=0, visible=False, precision=2)
estimated_time_taken_number = gr.Number(label = "Approximate time taken to extract text/redact (minutes)", value=0, visible=False, precision=2)
only_extract_text_radio = gr.Checkbox(value=False, label="Only extract text (no redaction)", visible=False)
# Textract API call placeholders in case option not selected in config
job_name_textbox = gr.Textbox(value="", label="Bulk Textract call", visible=False)
send_document_to_textract_api_btn = gr.Button("Analyse document with AWS Textract", variant="primary", visible=False)
job_id_textbox = gr.Textbox(label = "Latest job ID for bulk document analysis", value='', visible=False)
check_state_of_textract_api_call_btn = gr.Button("Check state of Textract document job and download", variant="secondary", visible=False)
job_current_status = gr.Textbox(value="", label="Analysis job current status", visible=False)
job_type_dropdown = gr.Dropdown(value="document_text_detection", choices=["document_text_detection", "document_analysis"], label="Job type of Textract analysis job", allow_custom_value=False, visible=False)
textract_job_detail_df = gr.Dataframe(pd.DataFrame(columns=['job_id','file_name','job_type','signature_extraction','s3_location','job_date_time']), label="Previous job details", visible=False, type="pandas", wrap=True)
selected_job_id_row = gr.Dataframe(pd.DataFrame(columns=['job_id','file_name','job_type','signature_extraction','s3_location','job_date_time']), label="Selected job id row", visible=False, type="pandas", wrap=True)
is_a_textract_api_call = gr.Checkbox(value=False, label="is_a_textract_api_call", visible=False)
job_output_textbox = gr.Textbox(value="", label="Textract call outputs", visible=False)
textract_job_output_file = gr.File(label="Textract job output files", height=file_input_height, visible=False)
###
# UI DESIGN
###
gr.Markdown(
"""# Document redaction
Redact personally identifiable information (PII) from documents (PDF, images), open text, or tabular data (XLSX/CSV/Parquet). Please see the [User Guide](https://github.com/seanpedrick-case/doc_redaction/blob/main/README.md) for a walkthrough on how to use the app. Below is a very brief overview.
To identify text in documents, the 'Local' text/OCR image analysis uses spacy/tesseract, and works ok for documents with typed text. If available, choose 'AWS Textract' to redact more complex elements e.g. signatures or handwriting. Then, choose a method for PII identification. 'Local' is quick and gives good results if you are primarily looking for a custom list of terms to redact (see Redaction settings). If available, AWS Comprehend gives better results at a small cost.
After redaction, review suggested redactions on the 'Review redactions' tab. The original pdf can be uploaded here alongside a '...review_file.csv' to continue a previous redaction/review task. See the 'Redaction settings' tab to choose which pages to redact, the type of information to redact (e.g. people, places), or custom terms to always include/ exclude from redaction.
NOTE: The app is not 100% accurate, and it will miss some personal information. It is essential that all outputs are reviewed **by a human** before using the final outputs.""")
###
# REDACTION PDF/IMAGES TABLE
###
with gr.Tab("Redact PDFs/images"):
with gr.Accordion("Redact document", open = True):
in_doc_files = gr.File(label="Choose a document or image file (PDF, JPG, PNG)", file_count= "multiple", file_types=['.pdf', '.jpg', '.png', '.json', '.zip'], height=file_input_height)
text_extract_method_radio = gr.Radio(label="""Choose text extraction method. Local options are lower quality but cost nothing - they may be worth a try if you are willing to spend some time reviewing outputs. AWS Textract has a cost per page - £2.66 ($3.50) per 1,000 pages with signature detection (default), £1.14 ($1.50) without. Go to Redaction settings - AWS Textract options to remove signature detection.""", value = default_ocr_val, choices=[text_ocr_option, tesseract_ocr_option, textract_option])
with gr.Accordion("AWS Textract signature detection (default is on)", open = False):
handwrite_signature_checkbox = gr.CheckboxGroup(label="AWS Textract extraction settings", choices=["Extract handwriting", "Extract signatures"], value=["Extract handwriting", "Extract signatures"])
with gr.Row(equal_height=True):
pii_identification_method_drop = gr.Radio(label = """Choose personal information detection method. The local model is lower quality but costs nothing - it may be worth a try if you are willing to spend some time reviewing outputs, or if you are only interested in searching for custom search terms (see Redaction settings - custom deny list). AWS Comprehend has a cost of around £0.0075 ($0.01) per 10,000 characters.""", value = default_pii_detector, choices=[no_redaction_option, local_pii_detector, aws_pii_detector])
if SHOW_COSTS == "True":
with gr.Accordion("Estimated costs and time taken", open = True, visible=True):
with gr.Row(equal_height=True):
textract_output_found_checkbox = gr.Checkbox(value= False, label="Existing Textract output file found", interactive=False, visible=True)
total_pdf_page_count = gr.Number(label = "Total page count", value=0, visible=True)
estimated_aws_costs_number = gr.Number(label = "Approximate AWS Textract and/or Comprehend cost (£)", value=0.00, precision=2, visible=True)
estimated_time_taken_number = gr.Number(label = "Approximate time taken to extract text/redact (minutes)", value=0, visible=True, precision=2)
if GET_COST_CODES == "True" or ENFORCE_COST_CODES == "True":
with gr.Accordion("Apply cost code", open = True, visible=True):
with gr.Row():
cost_code_dataframe = gr.Dataframe(value=pd.DataFrame(), row_count = (0, "dynamic"), label="Existing cost codes", type="pandas", interactive=True, show_fullscreen_button=True, show_copy_button=True, show_search='filter', visible=True, wrap=True, max_height=200)
with gr.Column():
reset_cost_code_dataframe_button = gr.Button(value="Reset code code table filter")
cost_code_choice_drop = gr.Dropdown(value=DEFAULT_COST_CODE, label="Choose cost code for analysis", choices=[DEFAULT_COST_CODE], allow_custom_value=False, visible=True)
if SHOW_BULK_TEXTRACT_CALL_OPTIONS == "True":
with gr.Accordion("Submit whole document to AWS Textract API (quicker, max 3,000 pages per document)", open = False, visible=True):
with gr.Row(equal_height=True):
gr.Markdown("""Document will be submitted to AWS Textract API service to extract all text in the document. Processing will take place on (secure) AWS servers, and outputs will be stored on S3 for up to 7 days. To download the results, click 'Check status' below and they will be downloaded if ready.""")
with gr.Row(equal_height=True):
send_document_to_textract_api_btn = gr.Button("Analyse document with AWS Textract API call", variant="primary", visible=True)
with gr.Row(equal_height=False):
with gr.Column(scale=2):
textract_job_detail_df = gr.Dataframe(label="Previous job details", visible=True, type="pandas", wrap=True, interactive=True, row_count=(0, 'fixed'), col_count=(6,'fixed'), static_columns=[0,1,2,3,4,5])
with gr.Column(scale=1):
job_id_textbox = gr.Textbox(label = "Job ID to check status", value='', visible=True)
check_state_of_textract_api_call_btn = gr.Button("Check status of Textract job and download", variant="secondary", visible=True)
with gr.Row():
job_current_status = gr.Textbox(value="", label="Analysis job current status", visible=True)
textract_job_output_file = gr.File(label="Textract job output files", height=100, visible=True)
gr.Markdown("""If you only want to redact certain pages, or certain entities (e.g. just email addresses, or a custom list of terms), please go to the Redaction Settings tab.""")
document_redact_btn = gr.Button("Extract text and redact document", variant="primary", scale = 4)
with gr.Row():
redaction_output_summary_textbox = gr.Textbox(label="Output summary", scale=1)
output_file = gr.File(label="Output files", scale = 2)#, height=file_input_height)
latest_file_completed_text = gr.Number(value=0, label="Number of documents redacted", interactive=False, visible=False)
# Feedback elements are invisible until revealed by redaction action
pdf_feedback_title = gr.Markdown(value="## Please give feedback", visible=False)
pdf_feedback_radio = gr.Radio(label = "Quality of results", choices=["The results were good", "The results were not good"], visible=False)
pdf_further_details_text = gr.Textbox(label="Please give more detailed feedback about the results:", visible=False)
pdf_submit_feedback_btn = gr.Button(value="Submit feedback", visible=False)
###
# REVIEW REDACTIONS TAB
###
with gr.Tab("Review redactions", id="tab_object_annotation"):
with gr.Accordion(label = "Review PDF redactions", open=True):
output_review_files = gr.File(label="Upload original PDF and 'review_file' csv here to review suggested redactions. The 'ocr_output' file can also be optionally provided for text search.", file_count='multiple', height=file_input_height)
upload_previous_review_file_btn = gr.Button("Review PDF and 'review file' csv provided above", variant="secondary")
with gr.Row():
annotate_zoom_in = gr.Button("Zoom in", visible=False)
annotate_zoom_out = gr.Button("Zoom out", visible=False)
with gr.Row():
clear_all_redactions_on_page_btn = gr.Button("Clear all redactions on page", visible=False)
with gr.Row():
with gr.Column(scale=2):
with gr.Row(equal_height=True):
annotation_last_page_button = gr.Button("Previous page", scale = 4)
annotate_current_page = gr.Number(value=0, label="Current page", precision=0, scale = 2, min_width=50)
annotate_max_pages = gr.Number(value=0, label="Total pages", precision=0, interactive=False, scale = 2, min_width=50)
annotation_next_page_button = gr.Button("Next page", scale = 4)
zoom_str = str(annotator_zoom_number) + '%'
annotator = image_annotator(
label="Modify redaction boxes",
label_list=["Redaction"],
label_colors=[(0, 0, 0)],
show_label=False,
height=zoom_str,
width=zoom_str,
box_min_size=1,
box_selected_thickness=2,
handle_size=4,
sources=None,#["upload"],
show_clear_button=False,
show_share_button=False,
show_remove_button=False,
handles_cursor=True,
interactive=False
)
with gr.Row(equal_height=True):
annotation_last_page_button_bottom = gr.Button("Previous page", scale = 4)
annotate_current_page_bottom = gr.Number(value=0, label="Current page", precision=0, interactive=True, scale = 2, min_width=50)
annotate_max_pages_bottom = gr.Number(value=0, label="Total pages", precision=0, interactive=False, scale = 2, min_width=50)
annotation_next_page_button_bottom = gr.Button("Next page", scale = 4)
with gr.Column(scale=1):
annotation_button_apply = gr.Button("Apply revised redactions to PDF", variant="primary")
update_current_page_redactions_btn = gr.Button(value="Save changes on current page to file", variant="primary")
with gr.Accordion("Search suggested redactions", open=True):
with gr.Row(equal_height=True):
recogniser_entity_dropdown = gr.Dropdown(label="Redaction category", value="ALL", allow_custom_value=True)
page_entity_dropdown = gr.Dropdown(label="Page", value="ALL", allow_custom_value=True)
text_entity_dropdown = gr.Dropdown(label="Text", value="ALL", allow_custom_value=True)
recogniser_entity_dataframe = gr.Dataframe(pd.DataFrame(data={"page":[], "label":[], "text":[]}), col_count=(3,"fixed"), type="pandas", label="Search results. Click to go to page", headers=["page", "label", "text"], show_fullscreen_button=True, wrap=True, max_height=400)
with gr.Row(equal_height=True):
exclude_selected_row_btn = gr.Button(value="Exclude specific row from redactions")
exclude_selected_btn = gr.Button(value="Exclude all items in table from redactions")
with gr.Row(equal_height=True):
reset_dropdowns_btn = gr.Button(value="Reset filters")
undo_last_removal_btn = gr.Button(value="Undo last element removal")
selected_entity_dataframe_row = gr.Dataframe(pd.DataFrame(data={"page":[], "label":[], "text":[]}), col_count=3, type="pandas", visible=False, label="selected_entity_dataframe_row", headers=["page", "label", "text"], show_fullscreen_button=True, wrap=True)
with gr.Accordion("Search all extracted text", open=True):
all_line_level_ocr_results_df = gr.Dataframe(value=pd.DataFrame(), headers=["page", "text"], col_count=(2, 'fixed'), row_count = (0, "dynamic"), label="All OCR results", visible=True, type="pandas", wrap=True, show_fullscreen_button=True, show_search='filter', show_label=False, show_copy_button=True, max_height=400)
reset_all_ocr_results_btn = gr.Button(value="Reset OCR output table filter")
with gr.Accordion("Convert review files loaded above to Adobe format, or convert from Adobe format to review file", open = False):
convert_review_file_to_adobe_btn = gr.Button("Convert review file to Adobe comment format", variant="primary")
adobe_review_files_out = gr.File(label="Output Adobe comment files will appear here. If converting from .xfdf file to review_file.csv, upload the original pdf with the xfdf file here then click Convert below.", file_count='multiple', file_types=['.csv', '.xfdf', '.pdf'])
convert_adobe_to_review_file_btn = gr.Button("Convert Adobe .xfdf comment file to review_file.csv", variant="secondary")
###
# IDENTIFY DUPLICATE PAGES TAB
###
with gr.Tab(label="Identify duplicate pages"):
with gr.Accordion("Identify duplicate pages to redact", open = True):
in_duplicate_pages = gr.File(label="Upload multiple 'ocr_output.csv' data files from redaction jobs here to compare", file_count="multiple", height=file_input_height, file_types=['.csv'])
with gr.Row():
duplicate_threshold_value = gr.Number(value=0.9, label="Minimum similarity to be considered a duplicate (maximum = 1)", scale =1)
find_duplicate_pages_btn = gr.Button(value="Identify duplicate pages", variant="primary", scale = 4)
duplicate_pages_out = gr.File(label="Duplicate pages analysis output", file_count="multiple", height=file_input_height, file_types=['.csv'])
###
# TEXT / TABULAR DATA TAB
###
with gr.Tab(label="Open text or Excel/csv files"):
gr.Markdown("""### Choose open text or a tabular data file (xlsx or csv) to redact.""")
with gr.Accordion("Paste open text", open = False):
in_text = gr.Textbox(label="Enter open text", lines=10)
with gr.Accordion("Upload xlsx or csv files", open = True):
in_data_files = gr.File(label="Choose Excel or csv files", file_count= "multiple", file_types=['.xlsx', '.xls', '.csv', '.parquet', '.csv.gz'], height=file_input_height)
in_excel_sheets = gr.Dropdown(choices=["Choose Excel sheets to anonymise"], multiselect = True, label="Select Excel sheets that you want to anonymise (showing sheets present across all Excel files).", visible=False, allow_custom_value=True)
in_colnames = gr.Dropdown(choices=["Choose columns to anonymise"], multiselect = True, label="Select columns that you want to anonymise (showing columns present across all files).")
pii_identification_method_drop_tabular = gr.Radio(label = "Choose PII detection method. AWS Comprehend has a cost of approximately $0.01 per 10,000 characters.", value = default_pii_detector, choices=[local_pii_detector, aws_pii_detector])
tabular_data_redact_btn = gr.Button("Redact text/data files", variant="primary")
with gr.Row():
text_output_summary = gr.Textbox(label="Output result")
text_output_file = gr.File(label="Output files")
text_tabular_files_done = gr.Number(value=0, label="Number of tabular files redacted", interactive=False, visible=False)
# Feedback elements are invisible until revealed by redaction action
data_feedback_title = gr.Markdown(value="## Please give feedback", visible=False)
data_feedback_radio = gr.Radio(label="Please give some feedback about the results of the redaction. A reminder that the app is only expected to identify about 60% of personally identifiable information in a given (typed) document.",
choices=["The results were good", "The results were not good"], visible=False, show_label=True)
data_further_details_text = gr.Textbox(label="Please give more detailed feedback about the results:", visible=False)
data_submit_feedback_btn = gr.Button(value="Submit feedback", visible=False)
###
# SETTINGS TAB
###
with gr.Tab(label="Redaction settings"):
with gr.Accordion("Custom allow, deny, and full page redaction lists", open = True):
with gr.Row():
with gr.Column():
in_allow_list = gr.File(label="Import allow list file - csv table with one column of a different word/phrase on each row (case insensitive). Terms in this file will not be redacted.", file_count="multiple", height=file_input_height)
in_allow_list_text = gr.Textbox(label="Custom allow list load status")
with gr.Column():
in_deny_list = gr.File(label="Import custom deny list - csv table with one column of a different word/phrase on each row (case insensitive). Terms in this file will always be redacted.", file_count="multiple", height=file_input_height)
in_deny_list_text = gr.Textbox(label="Custom deny list load status")
with gr.Column():
in_fully_redacted_list = gr.File(label="Import fully redacted pages list - csv table with one column of page numbers on each row. Page numbers in this file will be fully redacted.", file_count="multiple", height=file_input_height)
in_fully_redacted_list_text = gr.Textbox(label="Fully redacted page list load status")
with gr.Accordion("Manually modify custom allow, deny, and full page redaction lists (NOTE: you need to press Enter after modifying/adding an entry to the lists to apply them)", open = False):
with gr.Row():
in_allow_list_state = gr.Dataframe(value=pd.DataFrame(), headers=["allow_list"], col_count=(1, "fixed"), row_count = (0, "dynamic"), label="Allow list", visible=True, type="pandas", interactive=True, show_fullscreen_button=True, show_copy_button=True, wrap=True)
in_deny_list_state = gr.Dataframe(value=pd.DataFrame(), headers=["deny_list"], col_count=(1, "fixed"), row_count = (0, "dynamic"), label="Deny list", visible=True, type="pandas", interactive=True, show_fullscreen_button=True, show_copy_button=True, wrap=True)
in_fully_redacted_list_state = gr.Dataframe(value=pd.DataFrame(), headers=["fully_redacted_pages_list"], col_count=(1, "fixed"), row_count = (0, "dynamic"), label="Fully redacted pages", visible=True, type="pandas", interactive=True, show_fullscreen_button=True, show_copy_button=True, datatype='number', wrap=True)
with gr.Accordion("Select entity types to redact", open = True):
in_redact_entities = gr.Dropdown(value=chosen_redact_entities, choices=full_entity_list, multiselect=True, label="Local PII identification model (click empty space in box for full list)")
in_redact_comprehend_entities = gr.Dropdown(value=chosen_comprehend_entities, choices=full_comprehend_entity_list, multiselect=True, label="AWS Comprehend PII identification model (click empty space in box for full list)")
with gr.Row():
max_fuzzy_spelling_mistakes_num = gr.Number(label="Maximum number of spelling mistakes allowed for fuzzy matching (CUSTOM_FUZZY entity).", value=1, minimum=0, maximum=9, precision=0)
match_fuzzy_whole_phrase_bool = gr.Checkbox(label="Should fuzzy search match on entire phrases in deny list (as opposed to each word individually)?", value=True)
with gr.Accordion("Redact only selected pages", open = False):
with gr.Row():
page_min = gr.Number(precision=0,minimum=0,maximum=9999, label="Lowest page to redact")
page_max = gr.Number(precision=0,minimum=0,maximum=9999, label="Highest page to redact")
with gr.Accordion("AWS options", open = False):
#with gr.Row():
in_redact_language = gr.Dropdown(value = REDACTION_LANGUAGE, choices = [REDACTION_LANGUAGE], label="Redaction language", multiselect=False, visible=False)
with gr.Row():
aws_access_key_textbox = gr.Textbox(value='', label="AWS access key for account with permissions for AWS Textract and Comprehend", visible=True, type="password")
aws_secret_key_textbox = gr.Textbox(value='', label="AWS secret key for account with permissions for AWS Textract and Comprehend", visible=True, type="password")
with gr.Accordion("Settings for open text or xlsx/csv files", open = False):
anon_strat = gr.Radio(choices=["replace with 'REDACTED'", "replace with <ENTITY_NAME>", "redact completely", "hash", "mask", "encrypt", "fake_first_name"], label="Select an anonymisation method.", value = "replace with 'REDACTED'")
log_files_output = gr.File(label="Log file output", interactive=False)
with gr.Accordion("Combine multiple review files", open = False):
multiple_review_files_in_out = gr.File(label="Combine multiple review_file.csv files together here.", file_count='multiple', file_types=['.csv'])
merge_multiple_review_files_btn = gr.Button("Merge multiple review files into one", variant="primary")
with gr.Accordion("View all output files from this session", open = False):
all_output_files_btn = gr.Button("Click here to view all output files", variant="secondary")
all_output_files = gr.File(label="All files in output folder", file_count='multiple', file_types=['.csv'], interactive=False)
###
### UI INTERACTION ###
###
###
# PDF/IMAGE REDACTION
###
# Recalculate estimated costs based on changes to inputs
if SHOW_COSTS == 'True':
# Calculate costs
total_pdf_page_count.change(calculate_aws_costs, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_aws_costs_number])
text_extract_method_radio.change(calculate_aws_costs, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_aws_costs_number])
pii_identification_method_drop.change(calculate_aws_costs, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_aws_costs_number])
handwrite_signature_checkbox.change(calculate_aws_costs, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_aws_costs_number])
textract_output_found_checkbox.change(calculate_aws_costs, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_aws_costs_number])
only_extract_text_radio.change(calculate_aws_costs, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_aws_costs_number])
# Calculate time taken
total_pdf_page_count.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_time_taken_number])
text_extract_method_radio.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_time_taken_number])
pii_identification_method_drop.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_time_taken_number])
handwrite_signature_checkbox.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_time_taken_number])
textract_output_found_checkbox.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_time_taken_number])
only_extract_text_radio.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_time_taken_number])
# Allow user to select items from cost code dataframe for cost code
if SHOW_COSTS=="True" and (GET_COST_CODES == "True" or ENFORCE_COST_CODES == "True"):
cost_code_dataframe.select(df_select_callback_cost, inputs=[cost_code_dataframe], outputs=[cost_code_choice_drop])
reset_cost_code_dataframe_button.click(reset_base_dataframe, inputs=[cost_code_dataframe_base], outputs=[cost_code_dataframe])
cost_code_choice_drop.select(update_cost_code_dataframe_from_dropdown_select, inputs=[cost_code_choice_drop, cost_code_dataframe_base], outputs=[cost_code_dataframe])
in_doc_files.upload(fn=get_input_file_names, inputs=[in_doc_files], outputs=[doc_file_name_no_extension_textbox, doc_file_name_with_extension_textbox, doc_full_file_name_textbox, doc_file_name_textbox_list, total_pdf_page_count]).\
success(fn = prepare_image_or_pdf, inputs=[in_doc_files, text_extract_method_radio, latest_file_completed_text, redaction_output_summary_textbox, first_loop_state, annotate_max_pages, all_image_annotations_state, prepare_for_review_bool_false, in_fully_redacted_list_state, output_folder_textbox, input_folder_textbox, prepare_images_bool_false], outputs=[redaction_output_summary_textbox, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state, all_image_annotations_state, review_file_state, document_cropboxes, page_sizes, textract_output_found_checkbox, all_img_details_state, all_line_level_ocr_results_df_base]).\
success(fn=check_for_existing_textract_file, inputs=[doc_file_name_no_extension_textbox, output_folder_textbox], outputs=[textract_output_found_checkbox])
# Run redaction function
document_redact_btn.click(fn = reset_state_vars, outputs=[all_image_annotations_state, all_line_level_ocr_results_df_base, all_decision_process_table_state, comprehend_query_number, textract_metadata_textbox, annotator, output_file_list_state, log_files_output_list_state, recogniser_entity_dataframe, recogniser_entity_dataframe_base, pdf_doc_state, duplication_file_path_outputs_list_state, redaction_output_summary_textbox, is_a_textract_api_call]).\
success(fn= enforce_cost_codes, inputs=[enforce_cost_code_textbox, cost_code_choice_drop, cost_code_dataframe_base]).\
success(fn= choose_and_run_redactor, inputs=[in_doc_files, prepared_pdf_state, images_pdf_state, in_redact_language, in_redact_entities, in_redact_comprehend_entities, text_extract_method_radio, in_allow_list_state, in_deny_list_state, in_fully_redacted_list_state, latest_file_completed_text, redaction_output_summary_textbox, output_file_list_state, log_files_output_list_state, first_loop_state, page_min, page_max, actual_time_taken_number, handwrite_signature_checkbox, textract_metadata_textbox, all_image_annotations_state, all_line_level_ocr_results_df_base, all_decision_process_table_state, pdf_doc_state, current_loop_page_number, page_break_return, pii_identification_method_drop, comprehend_query_number, max_fuzzy_spelling_mistakes_num, match_fuzzy_whole_phrase_bool, aws_access_key_textbox, aws_secret_key_textbox, annotate_max_pages, review_file_state, output_folder_textbox, document_cropboxes, page_sizes, textract_output_found_checkbox, only_extract_text_radio, duplication_file_path_outputs_list_state, latest_review_file_path, input_folder_textbox, textract_query_number, latest_ocr_file_path],
outputs=[redaction_output_summary_textbox, output_file, output_file_list_state, latest_file_completed_text, log_files_output, log_files_output_list_state, actual_time_taken_number, textract_metadata_textbox, pdf_doc_state, all_image_annotations_state, current_loop_page_number, page_break_return, all_line_level_ocr_results_df_base, all_decision_process_table_state, comprehend_query_number, output_review_files, annotate_max_pages, annotate_max_pages_bottom, prepared_pdf_state, images_pdf_state, review_file_state, page_sizes, duplication_file_path_outputs_list_state, in_duplicate_pages, latest_review_file_path, textract_query_number, latest_ocr_file_path], api_name="redact_doc").\
success(fn=update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, page_min, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs=[annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state])
# If the app has completed a batch of pages, it will rerun the redaction process until the end of all pages in the document
current_loop_page_number.change(fn = choose_and_run_redactor, inputs=[in_doc_files, prepared_pdf_state, images_pdf_state, in_redact_language, in_redact_entities, in_redact_comprehend_entities, text_extract_method_radio, in_allow_list_state, in_deny_list_state, in_fully_redacted_list_state, latest_file_completed_text, redaction_output_summary_textbox, output_file_list_state, log_files_output_list_state, second_loop_state, page_min, page_max, actual_time_taken_number, handwrite_signature_checkbox, textract_metadata_textbox, all_image_annotations_state, all_line_level_ocr_results_df_base, all_decision_process_table_state, pdf_doc_state, current_loop_page_number, page_break_return, pii_identification_method_drop, comprehend_query_number, max_fuzzy_spelling_mistakes_num, match_fuzzy_whole_phrase_bool, aws_access_key_textbox, aws_secret_key_textbox, annotate_max_pages, review_file_state, output_folder_textbox, document_cropboxes, page_sizes, textract_output_found_checkbox, only_extract_text_radio, duplication_file_path_outputs_list_state, latest_review_file_path, input_folder_textbox, textract_query_number, latest_ocr_file_path],
outputs=[redaction_output_summary_textbox, output_file, output_file_list_state, latest_file_completed_text, log_files_output, log_files_output_list_state, actual_time_taken_number, textract_metadata_textbox, pdf_doc_state, all_image_annotations_state, current_loop_page_number, page_break_return, all_line_level_ocr_results_df_base, all_decision_process_table_state, comprehend_query_number, output_review_files, annotate_max_pages, annotate_max_pages_bottom, prepared_pdf_state, images_pdf_state, review_file_state, page_sizes, duplication_file_path_outputs_list_state, in_duplicate_pages, latest_review_file_path, textract_query_number, latest_ocr_file_path]).\
success(fn=update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, page_min, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs=[annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state])
# If a file has been completed, the function will continue onto the next document
latest_file_completed_text.change(fn = choose_and_run_redactor, inputs=[in_doc_files, prepared_pdf_state, images_pdf_state, in_redact_language, in_redact_entities, in_redact_comprehend_entities, text_extract_method_radio, in_allow_list_state, in_deny_list_state, in_fully_redacted_list_state, latest_file_completed_text, redaction_output_summary_textbox, output_file_list_state, log_files_output_list_state, second_loop_state, page_min, page_max, actual_time_taken_number, handwrite_signature_checkbox, textract_metadata_textbox, all_image_annotations_state, all_line_level_ocr_results_df_base, all_decision_process_table_state, pdf_doc_state, current_loop_page_number, page_break_return, pii_identification_method_drop, comprehend_query_number, max_fuzzy_spelling_mistakes_num, match_fuzzy_whole_phrase_bool, aws_access_key_textbox, aws_secret_key_textbox, annotate_max_pages, review_file_state, output_folder_textbox, document_cropboxes, page_sizes, textract_output_found_checkbox, only_extract_text_radio, duplication_file_path_outputs_list_state, latest_review_file_path, input_folder_textbox, textract_query_number, latest_ocr_file_path],
outputs=[redaction_output_summary_textbox, output_file, output_file_list_state, latest_file_completed_text, log_files_output, log_files_output_list_state, actual_time_taken_number, textract_metadata_textbox, pdf_doc_state, all_image_annotations_state, current_loop_page_number, page_break_return, all_line_level_ocr_results_df_base, all_decision_process_table_state, comprehend_query_number, output_review_files, annotate_max_pages, annotate_max_pages_bottom, prepared_pdf_state, images_pdf_state, review_file_state, page_sizes, duplication_file_path_outputs_list_state, in_duplicate_pages, latest_review_file_path, textract_query_number, latest_ocr_file_path]).\
success(fn=update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, page_min, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs=[annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state]).\
success(fn=check_for_existing_textract_file, inputs=[doc_file_name_no_extension_textbox, output_folder_textbox], outputs=[textract_output_found_checkbox]).\
success(fn=reveal_feedback_buttons, outputs=[pdf_feedback_radio, pdf_further_details_text, pdf_submit_feedback_btn, pdf_feedback_title])
# If the line level ocr results are changed by load in by user or by a new redaction task, replace the ocr results displayed in the table
all_line_level_ocr_results_df_base.change(reset_ocr_base_dataframe, inputs=[all_line_level_ocr_results_df_base], outputs=[all_line_level_ocr_results_df])
# Send whole document to Textract for text extraction
send_document_to_textract_api_btn.click(analyse_document_with_textract_api, inputs=[prepared_pdf_state, s3_bulk_textract_input_subfolder, s3_bulk_textract_output_subfolder, textract_job_detail_df, s3_bulk_textract_default_bucket, output_folder_textbox, handwrite_signature_checkbox, successful_textract_api_call_number], outputs=[job_output_textbox, job_id_textbox, job_type_dropdown, successful_textract_api_call_number, is_a_textract_api_call])
check_state_of_textract_api_call_btn.click(check_for_provided_job_id, inputs=[job_id_textbox]).\
success(poll_bulk_textract_analysis_progress_and_download, inputs=[job_id_textbox, job_type_dropdown, s3_bulk_textract_output_subfolder, doc_file_name_no_extension_textbox, textract_job_detail_df, s3_bulk_textract_default_bucket, output_folder_textbox, s3_bulk_textract_logs_subfolder, local_bulk_textract_logs_subfolder], outputs = [textract_job_output_file, job_current_status, textract_job_detail_df]).\
success(fn=check_for_existing_textract_file, inputs=[doc_file_name_no_extension_textbox, output_folder_textbox], outputs=[textract_output_found_checkbox])
textract_job_detail_df.select(df_select_callback_textract_api, inputs=[textract_output_found_checkbox], outputs=[job_id_textbox, job_type_dropdown, selected_job_id_row])
###
# REVIEW PDF REDACTIONS
###
# Upload previous files for modifying redactions
upload_previous_review_file_btn.click(fn=reset_review_vars, inputs=None, outputs=[recogniser_entity_dataframe, recogniser_entity_dataframe_base]).\
success(fn=get_input_file_names, inputs=[output_review_files], outputs=[doc_file_name_no_extension_textbox, doc_file_name_with_extension_textbox, doc_full_file_name_textbox, doc_file_name_textbox_list, total_pdf_page_count]).\
success(fn = prepare_image_or_pdf, inputs=[output_review_files, text_extract_method_radio, latest_file_completed_text, redaction_output_summary_textbox, second_loop_state, annotate_max_pages, all_image_annotations_state, prepare_for_review_bool, in_fully_redacted_list_state, output_folder_textbox, input_folder_textbox, prepare_images_bool_false], outputs=[redaction_output_summary_textbox, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state, all_image_annotations_state, review_file_state, document_cropboxes, page_sizes, textract_output_found_checkbox, all_img_details_state, all_line_level_ocr_results_df_base], api_name="prepare_doc").\
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state])
# Page number controls
annotate_current_page.change(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state]).\
success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_state, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, output_review_files, log_files_output, review_file_state])
annotation_last_page_button.click(fn=decrease_page, inputs=[annotate_current_page], outputs=[annotate_current_page, annotate_current_page_bottom])
annotation_next_page_button.click(fn=increase_page, inputs=[annotate_current_page, all_image_annotations_state], outputs=[annotate_current_page, annotate_current_page_bottom])
annotation_last_page_button_bottom.click(fn=decrease_page, inputs=[annotate_current_page], outputs=[annotate_current_page, annotate_current_page_bottom])
annotation_next_page_button_bottom.click(fn=increase_page, inputs=[annotate_current_page, all_image_annotations_state], outputs=[annotate_current_page, annotate_current_page_bottom])
annotate_current_page_bottom.submit(update_other_annotator_number_from_current, inputs=[annotate_current_page_bottom], outputs=[annotate_current_page])
# Apply page redactions
annotation_button_apply.click(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_state, output_folder_textbox, save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, output_review_files, log_files_output, review_file_state], scroll_to_output=True)
# Review table controls
recogniser_entity_dropdown.select(update_entities_df_recogniser_entities, inputs=[recogniser_entity_dropdown, recogniser_entity_dataframe_base, page_entity_dropdown, text_entity_dropdown], outputs=[recogniser_entity_dataframe, text_entity_dropdown, page_entity_dropdown])
page_entity_dropdown.select(update_entities_df_page, inputs=[page_entity_dropdown, recogniser_entity_dataframe_base, recogniser_entity_dropdown, text_entity_dropdown], outputs=[recogniser_entity_dataframe, recogniser_entity_dropdown, text_entity_dropdown])
text_entity_dropdown.select(update_entities_df_text, inputs=[text_entity_dropdown, recogniser_entity_dataframe_base, recogniser_entity_dropdown, page_entity_dropdown], outputs=[recogniser_entity_dataframe, recogniser_entity_dropdown, page_entity_dropdown])
recogniser_entity_dataframe.select(df_select_callback, inputs=[recogniser_entity_dataframe], outputs=[annotate_current_page, selected_entity_dataframe_row])#.\
#success(update_selected_review_df_row_colour, inputs=[selected_entity_dataframe_row, review_file_state], outputs=[review_file_state]).\
#success(update_annotator_page_from_review_df, inputs=[review_file_state, images_pdf_state, page_sizes, annotate_current_page, annotate_previous_page, all_image_annotations_state, annotator], outputs=[annotator, all_image_annotations_state])
reset_dropdowns_btn.click(reset_dropdowns, inputs=[recogniser_entity_dataframe_base], outputs=[recogniser_entity_dropdown, text_entity_dropdown, page_entity_dropdown]).\
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state])
# Exclude current selection from annotator and outputs
# Exclude only row
exclude_selected_row_btn.click(exclude_selected_items_from_redaction, inputs=[review_file_state, selected_entity_dataframe_row, images_pdf_state, page_sizes, all_image_annotations_state, recogniser_entity_dataframe_base], outputs=[review_file_state, all_image_annotations_state, recogniser_entity_dataframe_base, backup_review_state, backup_image_annotations_state, backup_recogniser_entity_dataframe_base]).\
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state]).\
success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_state, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, output_review_files, log_files_output, review_file_state]).\
success(update_all_entity_df_dropdowns, inputs=[recogniser_entity_dataframe_base, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown], outputs=[recogniser_entity_dropdown, text_entity_dropdown, page_entity_dropdown])
# Exclude everything visible in table
exclude_selected_btn.click(exclude_selected_items_from_redaction, inputs=[review_file_state, recogniser_entity_dataframe, images_pdf_state, page_sizes, all_image_annotations_state, recogniser_entity_dataframe_base], outputs=[review_file_state, all_image_annotations_state, recogniser_entity_dataframe_base, backup_review_state, backup_image_annotations_state, backup_recogniser_entity_dataframe_base]).\
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state]).\
success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_state, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, output_review_files, log_files_output, review_file_state]).\
success(update_all_entity_df_dropdowns, inputs=[recogniser_entity_dataframe_base, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown], outputs=[recogniser_entity_dropdown, text_entity_dropdown, page_entity_dropdown])
undo_last_removal_btn.click(undo_last_removal, inputs=[backup_review_state, backup_image_annotations_state, backup_recogniser_entity_dataframe_base], outputs=[review_file_state, all_image_annotations_state, recogniser_entity_dataframe_base]).\
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state]).\
success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_state, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, output_review_files, log_files_output, review_file_state])
update_current_page_redactions_btn.click(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_current_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state]).\
success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_state, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, output_review_files, log_files_output, review_file_state])
# Review OCR text buttom
all_line_level_ocr_results_df.select(df_select_callback_ocr, inputs=[all_line_level_ocr_results_df], outputs=[annotate_current_page, selected_entity_dataframe_row], scroll_to_output=True)
reset_all_ocr_results_btn.click(reset_ocr_base_dataframe, inputs=[all_line_level_ocr_results_df_base], outputs=[all_line_level_ocr_results_df])
# Convert review file to xfdf Adobe format
convert_review_file_to_adobe_btn.click(fn=get_input_file_names, inputs=[output_review_files], outputs=[doc_file_name_no_extension_textbox, doc_file_name_with_extension_textbox, doc_full_file_name_textbox, doc_file_name_textbox_list, total_pdf_page_count]).\
success(fn = prepare_image_or_pdf, inputs=[output_review_files, text_extract_method_radio, latest_file_completed_text, redaction_output_summary_textbox, second_loop_state, annotate_max_pages, all_image_annotations_state, prepare_for_review_bool, in_fully_redacted_list_state, output_folder_textbox, input_folder_textbox, prepare_images_bool_false], outputs=[redaction_output_summary_textbox, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state, all_image_annotations_state, review_file_state, document_cropboxes, page_sizes, textract_output_found_checkbox, all_img_details_state, all_line_level_ocr_results_df_placeholder]).\
success(convert_df_to_xfdf, inputs=[output_review_files, pdf_doc_state, images_pdf_state, output_folder_textbox, document_cropboxes, page_sizes], outputs=[adobe_review_files_out])
# Convert xfdf Adobe file back to review_file.csv
convert_adobe_to_review_file_btn.click(fn=get_input_file_names, inputs=[adobe_review_files_out], outputs=[doc_file_name_no_extension_textbox, doc_file_name_with_extension_textbox, doc_full_file_name_textbox, doc_file_name_textbox_list, total_pdf_page_count]).\
success(fn = prepare_image_or_pdf, inputs=[adobe_review_files_out, text_extract_method_radio, latest_file_completed_text, redaction_output_summary_textbox, second_loop_state, annotate_max_pages, all_image_annotations_state, prepare_for_review_bool, in_fully_redacted_list_state, output_folder_textbox, input_folder_textbox, prepare_images_bool_false], outputs=[redaction_output_summary_textbox, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state, all_image_annotations_state, review_file_state, document_cropboxes, page_sizes, textract_output_found_checkbox, all_img_details_state, all_line_level_ocr_results_df_placeholder]).\
success(fn=convert_xfdf_to_dataframe, inputs=[adobe_review_files_out, pdf_doc_state, images_pdf_state, output_folder_textbox], outputs=[output_review_files], scroll_to_output=True)
###
# TABULAR DATA REDACTION
###
in_data_files.upload(fn=put_columns_in_df, inputs=[in_data_files], outputs=[in_colnames, in_excel_sheets]).\
success(fn=get_input_file_names, inputs=[in_data_files], outputs=[data_file_name_no_extension_textbox, data_file_name_with_extension_textbox, data_full_file_name_textbox, data_file_name_textbox_list, total_pdf_page_count])
tabular_data_redact_btn.click(fn=anonymise_data_files, inputs=[in_data_files, in_text, anon_strat, in_colnames, in_redact_language, in_redact_entities, in_allow_list_state, text_tabular_files_done, text_output_summary, text_output_file_list_state, log_files_output_list_state, in_excel_sheets, first_loop_state, output_folder_textbox, in_deny_list_state, max_fuzzy_spelling_mistakes_num, pii_identification_method_drop_tabular, in_redact_comprehend_entities, comprehend_query_number, aws_access_key_textbox, aws_secret_key_textbox], outputs=[text_output_summary, text_output_file, text_output_file_list_state, text_tabular_files_done, log_files_output, log_files_output_list_state], api_name="redact_data")
# If the output file count text box changes, keep going with redacting each data file until done
text_tabular_files_done.change(fn=anonymise_data_files, inputs=[in_data_files, in_text, anon_strat, in_colnames, in_redact_language, in_redact_entities, in_allow_list_state, text_tabular_files_done, text_output_summary, text_output_file_list_state, log_files_output_list_state, in_excel_sheets, second_loop_state, output_folder_textbox, in_deny_list_state, max_fuzzy_spelling_mistakes_num, pii_identification_method_drop_tabular, in_redact_comprehend_entities, comprehend_query_number, aws_access_key_textbox, aws_secret_key_textbox], outputs=[text_output_summary, text_output_file, text_output_file_list_state, text_tabular_files_done, log_files_output, log_files_output_list_state]).\
success(fn = reveal_feedback_buttons, outputs=[data_feedback_radio, data_further_details_text, data_submit_feedback_btn, data_feedback_title])
###
# IDENTIFY DUPLICATE PAGES
###
find_duplicate_pages_btn.click(fn=identify_similar_pages, inputs=[in_duplicate_pages, duplicate_threshold_value, output_folder_textbox], outputs=[duplicate_pages_df, duplicate_pages_out])
###
# SETTINGS PAGE INPUT / OUTPUT
###
# If a custom allow/deny/duplicate page list is uploaded
in_allow_list.change(fn=custom_regex_load, inputs=[in_allow_list], outputs=[in_allow_list_text, in_allow_list_state])
in_deny_list.change(fn=custom_regex_load, inputs=[in_deny_list, in_deny_list_text_in], outputs=[in_deny_list_text, in_deny_list_state])
in_fully_redacted_list.change(fn=custom_regex_load, inputs=[in_fully_redacted_list, in_fully_redacted_text_in], outputs=[in_fully_redacted_list_text, in_fully_redacted_list_state])
# The following allows for more reliable updates of the data in the custom list dataframes
in_allow_list_state.input(update_dataframe, inputs=[in_allow_list_state], outputs=[in_allow_list_state])
in_deny_list_state.input(update_dataframe, inputs=[in_deny_list_state], outputs=[in_deny_list_state])
in_fully_redacted_list_state.input(update_dataframe, inputs=[in_fully_redacted_list_state], outputs=[in_fully_redacted_list_state])
# Merge multiple review csv files together
merge_multiple_review_files_btn.click(fn=merge_csv_files, inputs=multiple_review_files_in_out, outputs=multiple_review_files_in_out)
#
all_output_files_btn.click(fn=load_all_output_files, inputs=output_folder_textbox, outputs=all_output_files)
###
# APP LOAD AND LOGGING
###
# Get connection details on app load
if SHOW_BULK_TEXTRACT_CALL_OPTIONS == "True":
app.load(get_connection_params, inputs=[output_folder_textbox, input_folder_textbox, session_output_folder_textbox, s3_bulk_textract_input_subfolder, s3_bulk_textract_output_subfolder, s3_bulk_textract_logs_subfolder, local_bulk_textract_logs_subfolder], outputs=[session_hash_state, output_folder_textbox, session_hash_textbox, input_folder_textbox, s3_bulk_textract_input_subfolder, s3_bulk_textract_output_subfolder, s3_bulk_textract_logs_subfolder, local_bulk_textract_logs_subfolder]).\
success(load_in_textract_job_details, inputs=[load_s3_bulk_textract_logs_bool, s3_bulk_textract_logs_subfolder, local_bulk_textract_logs_subfolder], outputs=[textract_job_detail_df])
else:
app.load(get_connection_params, inputs=[output_folder_textbox, input_folder_textbox, session_output_folder_textbox, s3_bulk_textract_input_subfolder, s3_bulk_textract_output_subfolder, s3_bulk_textract_logs_subfolder, local_bulk_textract_logs_subfolder], outputs=[session_hash_state, output_folder_textbox, session_hash_textbox, input_folder_textbox, s3_bulk_textract_input_subfolder, s3_bulk_textract_output_subfolder, s3_bulk_textract_logs_subfolder, local_bulk_textract_logs_subfolder])
# If relevant environment variable is set, load in the Textract job details
# If relevant environment variable is set, load in the default allow list file from S3 or locally. Even when setting S3 path, need to local path to give a download location
if GET_DEFAULT_ALLOW_LIST == "True" and (ALLOW_LIST_PATH or S3_ALLOW_LIST_PATH):
if not os.path.exists(ALLOW_LIST_PATH) and S3_ALLOW_LIST_PATH and RUN_AWS_FUNCTIONS == "1":
print("Downloading allow list from S3")
app.load(download_file_from_s3, inputs=[s3_default_bucket, s3_default_allow_list_file, default_allow_list_output_folder_location]).\
success(load_in_default_allow_list, inputs = [default_allow_list_output_folder_location], outputs=[in_allow_list])
print("Successfully loaded allow list from S3")
elif os.path.exists(ALLOW_LIST_PATH):
print("Loading allow list from default allow list output path location:", ALLOW_LIST_PATH)
app.load(load_in_default_allow_list, inputs = [default_allow_list_output_folder_location], outputs=[in_allow_list])
else: print("Could not load in default allow list")
# If relevant environment variable is set, load in the default cost code file from S3 or locally
if GET_COST_CODES == "True" and (COST_CODES_PATH or S3_COST_CODES_PATH):
if not os.path.exists(COST_CODES_PATH) and S3_COST_CODES_PATH and RUN_AWS_FUNCTIONS == "1":
print("Downloading cost codes from S3")
app.load(download_file_from_s3, inputs=[s3_default_bucket, s3_default_cost_codes_file, default_cost_codes_output_folder_location]).\
success(load_in_default_cost_codes, inputs = [default_cost_codes_output_folder_location, default_cost_code_textbox], outputs=[cost_code_dataframe, cost_code_dataframe_base, cost_code_choice_drop])
print("Successfully loaded cost codes from S3")
elif os.path.exists(COST_CODES_PATH):
print("Loading cost codes from default cost codes path location:", COST_CODES_PATH)
app.load(load_in_default_cost_codes, inputs = [default_cost_codes_output_folder_location, default_cost_code_textbox], outputs=[cost_code_dataframe, cost_code_dataframe_base, cost_code_choice_drop])
else: print("Could not load in cost code data")
###
# LOGGING
###
# Log usernames and times of access to file (to know who is using the app when running on AWS)
access_callback = CSVLogger_custom(dataset_file_name=log_file_name)
access_callback.setup([session_hash_textbox, host_name_textbox], ACCESS_LOGS_FOLDER)
session_hash_textbox.change(lambda *args: access_callback.flag(list(args)), [session_hash_textbox, host_name_textbox], None, preprocess=False).\
success(fn = upload_file_to_s3, inputs=[access_logs_state, access_s3_logs_loc_state], outputs=[s3_logs_output_textbox])
# User submitted feedback for pdf redactions
pdf_callback = CSVLogger_custom(dataset_file_name=log_file_name)
pdf_callback.setup([pdf_feedback_radio, pdf_further_details_text, doc_file_name_no_extension_textbox], FEEDBACK_LOGS_FOLDER)
pdf_submit_feedback_btn.click(lambda *args: pdf_callback.flag(list(args)), [pdf_feedback_radio, pdf_further_details_text, doc_file_name_no_extension_textbox], None, preprocess=False).\
success(fn = upload_file_to_s3, inputs=[feedback_logs_state, feedback_s3_logs_loc_state], outputs=[pdf_further_details_text])
# User submitted feedback for data redactions
data_callback = CSVLogger_custom(dataset_file_name=log_file_name)
data_callback.setup([data_feedback_radio, data_further_details_text, data_full_file_name_textbox], FEEDBACK_LOGS_FOLDER)
data_submit_feedback_btn.click(lambda *args: data_callback.flag(list(args)), [data_feedback_radio, data_further_details_text, data_full_file_name_textbox], None, preprocess=False).\
success(fn = upload_file_to_s3, inputs=[feedback_logs_state, feedback_s3_logs_loc_state], outputs=[data_further_details_text])
# Log processing time/token usage when making a query
usage_callback = CSVLogger_custom(dataset_file_name=log_file_name)
if DISPLAY_FILE_NAMES_IN_LOGS == 'True':
usage_callback.setup([session_hash_textbox, doc_file_name_no_extension_textbox, data_full_file_name_textbox, total_pdf_page_count, actual_time_taken_number, textract_query_number, pii_identification_method_drop, comprehend_query_number, cost_code_choice_drop, handwrite_signature_checkbox, host_name_textbox], USAGE_LOGS_FOLDER)
latest_file_completed_text.change(lambda *args: usage_callback.flag(list(args)), [session_hash_textbox, doc_file_name_no_extension_textbox, data_full_file_name_textbox, total_pdf_page_count, actual_time_taken_number, textract_query_number, pii_identification_method_drop, comprehend_query_number, cost_code_choice_drop, handwrite_signature_checkbox, host_name_textbox], None, preprocess=False).\
success(fn = upload_file_to_s3, inputs=[usage_logs_state, usage_s3_logs_loc_state], outputs=[s3_logs_output_textbox])
successful_textract_api_call_number.change(lambda *args: usage_callback.flag(list(args)), [session_hash_textbox, doc_file_name_no_extension_textbox, data_full_file_name_textbox, total_pdf_page_count, actual_time_taken_number, textract_query_number, pii_identification_method_drop, comprehend_query_number, cost_code_choice_drop, handwrite_signature_checkbox, host_name_textbox], None, preprocess=False).\
success(fn = upload_file_to_s3, inputs=[usage_logs_state, usage_s3_logs_loc_state], outputs=[s3_logs_output_textbox])
else:
usage_callback.setup([session_hash_textbox, blank_doc_file_name_no_extension_textbox_for_logs, data_full_file_name_textbox, actual_time_taken_number, total_pdf_page_count, textract_query_number, pii_identification_method_drop, comprehend_query_number, cost_code_choice_drop, handwrite_signature_checkbox, host_name_textbox], USAGE_LOGS_FOLDER)
latest_file_completed_text.change(lambda *args: usage_callback.flag(list(args)), [session_hash_textbox, blank_doc_file_name_no_extension_textbox_for_logs, data_full_file_name_textbox, actual_time_taken_number, total_pdf_page_count, textract_query_number, pii_identification_method_drop, comprehend_query_number, cost_code_choice_drop, handwrite_signature_checkbox, host_name_textbox], None, preprocess=False).\
success(fn = upload_file_to_s3, inputs=[usage_logs_state, usage_s3_logs_loc_state], outputs=[s3_logs_output_textbox])
successful_textract_api_call_number.change(lambda *args: usage_callback.flag(list(args)), [session_hash_textbox, blank_doc_file_name_no_extension_textbox_for_logs, data_full_file_name_textbox, actual_time_taken_number, total_pdf_page_count, textract_query_number, pii_identification_method_drop, comprehend_query_number, cost_code_choice_drop, handwrite_signature_checkbox, host_name_textbox], None, preprocess=False).\
success(fn = upload_file_to_s3, inputs=[usage_logs_state, usage_s3_logs_loc_state], outputs=[s3_logs_output_textbox])
if __name__ == "__main__":
if RUN_DIRECT_MODE == "0":
if os.environ['COGNITO_AUTH'] == "1":
app.queue(max_size=int(MAX_QUEUE_SIZE), default_concurrency_limit=int(DEFAULT_CONCURRENCY_LIMIT)).launch(show_error=True, auth=authenticate_user, max_file_size=MAX_FILE_SIZE, server_port=GRADIO_SERVER_PORT, root_path=ROOT_PATH)
else:
app.queue(max_size=int(MAX_QUEUE_SIZE), default_concurrency_limit=int(DEFAULT_CONCURRENCY_LIMIT)).launch(show_error=True, inbrowser=True, max_file_size=MAX_FILE_SIZE, server_port=GRADIO_SERVER_PORT, root_path=ROOT_PATH)
else:
from tools.cli_redact import main
main(first_loop_state, latest_file_completed=0, redaction_output_summary_textbox="", output_file_list=None,
log_files_list=None, estimated_time=0, textract_metadata="", comprehend_query_num=0,
current_loop_page=0, page_break=False, pdf_doc_state = [], all_image_annotations = [], all_line_level_ocr_results_df = pd.DataFrame(), all_decision_process_table = pd.DataFrame(),chosen_comprehend_entities = chosen_comprehend_entities, chosen_redact_entities = chosen_redact_entities, handwrite_signature_checkbox = ["Extract handwriting", "Extract signatures"])
# AWS options - placeholder for possibility of storing data on s3 and retrieving it in app
# with gr.Tab(label="Advanced options"):
# with gr.Accordion(label = "AWS data access", open = True):
# aws_password_box = gr.Textbox(label="Password for AWS data access (ask the Data team if you don't have this)")
# with gr.Row():
# in_aws_file = gr.Dropdown(label="Choose file to load from AWS (only valid for API Gateway app)", choices=["None", "Lambeth borough plan"])
# load_aws_data_button = gr.Button(value="Load data from AWS", variant="secondary")
# aws_log_box = gr.Textbox(label="AWS data load status")
# ### Loading AWS data ###
# load_aws_data_button.click(fn=load_data_from_aws, inputs=[in_aws_file, aws_password_box], outputs=[in_doc_files, aws_log_box]) |