File size: 86,765 Bytes
dce6100
ed5f8c7
8235bbb
0ea8b9e
ebf9010
 
7b345c3
a33b955
0ea8b9e
0f18146
0ea8b9e
ed5f8c7
01c88c0
bc22fc4
ec98119
34bd97b
a265560
ed5f8c7
641ff3e
0ea8b9e
 
93ac94f
f0f9378
 
bde6e5b
f0f9378
ec98119
 
 
 
bde6e5b
1d772de
f0f9378
bde6e5b
f0f9378
0ea8b9e
bc4bdbd
1b13393
f0f9378
 
 
056204b
f0f9378
 
 
 
641ff3e
a770956
641ff3e
bc22fc4
641ff3e
8652429
 
 
42180e4
 
eea5c07
ed5f8c7
cb349ad
4276db1
0ea8b9e
 
eea5c07
dacc782
ed5f8c7
dacc782
ed5f8c7
0ea8b9e
 
bc4bdbd
dacc782
 
 
66e145d
eea5c07
dacc782
66e145d
 
dacc782
0ea8b9e
cb349ad
dacc782
 
 
0ea8b9e
 
66e145d
 
 
 
0ea8b9e
8235bbb
34addbf
0ea8b9e
 
 
 
 
 
dacc782
8235bbb
 
 
0ea8b9e
 
e2aae24
 
0ea8b9e
8235bbb
1d772de
0ea8b9e
4276db1
1d772de
 
 
 
 
66e145d
 
 
 
 
8235bbb
0ea8b9e
8235bbb
cb349ad
8652429
ec98119
08a3ec3
dacc782
 
ec98119
dacc782
42180e4
ed5f8c7
0ea8b9e
e2aae24
a770956
 
0ea8b9e
0e1a4a7
a770956
 
0ea8b9e
0e1a4a7
a770956
 
0ea8b9e
 
7b345c3
6319afc
ed5f8c7
 
 
 
 
 
 
 
 
0ea8b9e
7b345c3
0ea8b9e
ed5f8c7
ec98119
4276db1
0ea8b9e
4276db1
ed5f8c7
4276db1
1d772de
a265560
 
ed5f8c7
0ea8b9e
 
 
 
 
 
 
ed5f8c7
0ea8b9e
 
 
 
 
 
 
a265560
ed5f8c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8652429
 
 
bc22fc4
641ff3e
8235bbb
641ff3e
0ea8b9e
8235bbb
0ea8b9e
1b13393
0ea8b9e
7810536
1b13393
641ff3e
a265560
0ea8b9e
a265560
 
7810536
6319afc
0ea8b9e
ed5f8c7
0ea8b9e
 
ed5f8c7
0ea8b9e
ed5f8c7
 
0ea8b9e
 
4276db1
ed5f8c7
 
 
 
 
0ea8b9e
 
 
4276db1
 
 
 
ed5f8c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4276db1
 
 
641ff3e
 
ed5f8c7
0ea8b9e
eea5c07
641ff3e
8652429
bbf818d
8235bbb
bbf818d
 
8652429
a265560
 
 
ebf9010
 
6319afc
4276db1
0ea8b9e
08a3ec3
 
 
 
ed5f8c7
66e145d
ed5f8c7
66e145d
 
 
ed5f8c7
 
66e145d
ebf9010
1d772de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed5f8c7
 
 
 
 
 
 
08a3ec3
ed5f8c7
4276db1
 
 
 
 
 
 
0ea8b9e
4276db1
 
 
 
 
 
 
0ea8b9e
4276db1
 
 
 
ed5f8c7
6b28cfa
 
 
bde6e5b
0ea8b9e
 
 
 
 
 
 
 
 
a33b955
 
0ea8b9e
 
 
a265560
8652429
a265560
7810536
0ea8b9e
7810536
 
01c88c0
1b13393
01c88c0
 
7810536
01c88c0
ff290e1
 
7810536
8c33828
7810536
 
 
01c88c0
bbf818d
7810536
8652429
bbf818d
 
eea5c07
bbf818d
 
8c33828
a265560
8652429
a265560
1b13393
 
7810536
a770956
0e1a4a7
6ea0852
a770956
0e1a4a7
a770956
 
1b13393
a770956
0e1a4a7
66e145d
0ea8b9e
 
 
a770956
1b13393
 
 
 
bde6e5b
 
fcbaca7
bde6e5b
1b13393
 
 
 
 
0ea8b9e
f0f9378
0ea8b9e
f0f9378
7907ad4
391712c
 
7907ad4
1b13393
ff290e1
f0f9378
bde6e5b
 
 
dacc782
 
 
 
 
0ea8b9e
bde6e5b
ed5f8c7
bde6e5b
ed5f8c7
eea5c07
8652429
 
 
0ea8b9e
 
 
ed5f8c7
0ea8b9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4276db1
0ea8b9e
ed5f8c7
 
0ea8b9e
ed5f8c7
0ea8b9e
8652429
6319afc
ed5f8c7
 
 
 
0ea8b9e
 
66e145d
ed5f8c7
 
0ea8b9e
 
eea5c07
ed5f8c7
 
0ea8b9e
 
6319afc
eea5c07
4276db1
 
ed5f8c7
 
 
 
 
 
 
 
 
4276db1
a770956
 
 
ebf9010
1d772de
66e145d
0ea8b9e
ed5f8c7
0ea8b9e
 
 
 
 
 
eea5c07
ed5f8c7
 
ebf9010
ed5f8c7
 
01c88c0
0ea8b9e
eea5c07
0ea8b9e
 
1d772de
3518b67
66e145d
 
 
1d772de
0ea8b9e
 
 
66e145d
 
0ea8b9e
 
 
 
 
 
 
 
 
 
 
66e145d
0ea8b9e
 
 
66e145d
 
0ea8b9e
 
 
 
 
 
e2aae24
4276db1
 
a33b955
4276db1
6b28cfa
0ea8b9e
ed5f8c7
6319afc
6b28cfa
 
0ea8b9e
ed5f8c7
08a3ec3
6b28cfa
8652429
 
dacc782
8652429
0ea8b9e
01c88c0
0e1a4a7
01c88c0
 
0e1a4a7
08a3ec3
01c88c0
a265560
 
 
0ea8b9e
a265560
a770956
 
 
a265560
a770956
 
 
bde6e5b
0e1a4a7
 
 
 
 
bde6e5b
 
dacc782
 
 
a770956
8652429
 
 
 
34addbf
ed5f8c7
 
 
 
 
 
 
 
 
641ff3e
e4c7d3c
7b345c3
818efbc
 
6319afc
 
e4c7d3c
 
 
6319afc
e4c7d3c
390bef2
0ea8b9e
818efbc
 
 
0ea8b9e
ed5f8c7
e4c7d3c
 
 
ed5f8c7
e4c7d3c
0ea8b9e
f6e6d80
 
 
ed5f8c7
8c33828
34bd97b
ed5f8c7
 
 
08a3ec3
641ff3e
8c33828
34bd97b
0ea8b9e
e2aae24
08a3ec3
8c33828
 
34bd97b
0ea8b9e
1d772de
08a3ec3
8c33828
34addbf
0ea8b9e
b8e245f
0ea8b9e
ed5f8c7
 
 
 
 
 
0ea8b9e
 
ed5f8c7
 
 
0ea8b9e
dea568f
ed5f8c7
 
e5dfae7
ed5f8c7
e5dfae7
2bb3ff5
e5dfae7
dea568f
e5dfae7
dea568f
e5dfae7
bc22fc4
e5dfae7
 
ed5f8c7
e5dfae7
4276db1
8652429
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
import os
import logging
import pandas as pd
import gradio as gr
from gradio_image_annotation import image_annotator

from tools.config import OUTPUT_FOLDER, INPUT_FOLDER, RUN_DIRECT_MODE, MAX_QUEUE_SIZE, DEFAULT_CONCURRENCY_LIMIT, MAX_FILE_SIZE, GRADIO_SERVER_PORT, ROOT_PATH, GET_DEFAULT_ALLOW_LIST, ALLOW_LIST_PATH, S3_ALLOW_LIST_PATH, FEEDBACK_LOGS_FOLDER, ACCESS_LOGS_FOLDER, USAGE_LOGS_FOLDER, TESSERACT_FOLDER, POPPLER_FOLDER, REDACTION_LANGUAGE, GET_COST_CODES, COST_CODES_PATH, S3_COST_CODES_PATH, ENFORCE_COST_CODES, DISPLAY_FILE_NAMES_IN_LOGS, SHOW_COSTS, RUN_AWS_FUNCTIONS, DOCUMENT_REDACTION_BUCKET, SHOW_BULK_TEXTRACT_CALL_OPTIONS, TEXTRACT_BULK_ANALYSIS_BUCKET, TEXTRACT_BULK_ANALYSIS_INPUT_SUBFOLDER, TEXTRACT_BULK_ANALYSIS_OUTPUT_SUBFOLDER, SESSION_OUTPUT_FOLDER, LOAD_PREVIOUS_TEXTRACT_JOBS_S3, TEXTRACT_JOBS_S3_LOC, TEXTRACT_JOBS_LOCAL_LOC, HOST_NAME, DEFAULT_COST_CODE, OUTPUT_COST_CODES_PATH, OUTPUT_ALLOW_LIST_PATH
from tools.helper_functions import put_columns_in_df, get_connection_params, reveal_feedback_buttons, custom_regex_load, reset_state_vars, load_in_default_allow_list, tesseract_ocr_option, text_ocr_option, textract_option, local_pii_detector, aws_pii_detector, no_redaction_option, reset_review_vars, merge_csv_files, load_all_output_files, update_dataframe, check_for_existing_textract_file, load_in_default_cost_codes, enforce_cost_codes, calculate_aws_costs, calculate_time_taken, reset_base_dataframe, reset_ocr_base_dataframe, update_cost_code_dataframe_from_dropdown_select
from tools.aws_functions import upload_file_to_s3, download_file_from_s3
from tools.file_redaction import choose_and_run_redactor
from tools.file_conversion import prepare_image_or_pdf, get_input_file_names, convert_review_df_to_annotation_json
from tools.redaction_review import apply_redactions_to_review_df_and_files, update_all_page_annotation_object_based_on_previous_page, decrease_page, increase_page, update_annotator_object_and_filter_df, update_entities_df_recogniser_entities, update_entities_df_page, update_entities_df_text, df_select_callback, convert_df_to_xfdf, convert_xfdf_to_dataframe, reset_dropdowns, exclude_selected_items_from_redaction, undo_last_removal, update_selected_review_df_row_colour, update_all_entity_df_dropdowns, df_select_callback_cost, update_other_annotator_number_from_current, update_annotator_page_from_review_df, df_select_callback_ocr, df_select_callback_textract_api
from tools.data_anonymise import anonymise_data_files
from tools.auth import authenticate_user
from tools.load_spacy_model_custom_recognisers import custom_entities
from tools.custom_csvlogger import CSVLogger_custom
from tools.find_duplicate_pages import identify_similar_pages
from tools.textract_batch_call import analyse_document_with_textract_api, poll_bulk_textract_analysis_progress_and_download, load_in_textract_job_details, check_for_provided_job_id

# Suppress downcasting warnings
pd.set_option('future.no_silent_downcasting', True)

chosen_comprehend_entities = ['BANK_ACCOUNT_NUMBER','BANK_ROUTING','CREDIT_DEBIT_NUMBER','CREDIT_DEBIT_CVV','CREDIT_DEBIT_EXPIRY','PIN','EMAIL','ADDRESS','NAME','PHONE', 'PASSPORT_NUMBER','DRIVER_ID', 'USERNAME','PASSWORD', 'IP_ADDRESS','MAC_ADDRESS', 'LICENSE_PLATE','VEHICLE_IDENTIFICATION_NUMBER','UK_NATIONAL_INSURANCE_NUMBER', 'INTERNATIONAL_BANK_ACCOUNT_NUMBER','SWIFT_CODE','UK_NATIONAL_HEALTH_SERVICE_NUMBER']

full_comprehend_entity_list = ['BANK_ACCOUNT_NUMBER','BANK_ROUTING','CREDIT_DEBIT_NUMBER','CREDIT_DEBIT_CVV','CREDIT_DEBIT_EXPIRY','PIN','EMAIL','ADDRESS','NAME','PHONE','SSN','DATE_TIME','PASSPORT_NUMBER','DRIVER_ID','URL','AGE','USERNAME','PASSWORD','AWS_ACCESS_KEY','AWS_SECRET_KEY','IP_ADDRESS','MAC_ADDRESS','ALL','LICENSE_PLATE','VEHICLE_IDENTIFICATION_NUMBER','UK_NATIONAL_INSURANCE_NUMBER','CA_SOCIAL_INSURANCE_NUMBER','US_INDIVIDUAL_TAX_IDENTIFICATION_NUMBER','UK_UNIQUE_TAXPAYER_REFERENCE_NUMBER','IN_PERMANENT_ACCOUNT_NUMBER','IN_NREGA','INTERNATIONAL_BANK_ACCOUNT_NUMBER','SWIFT_CODE','UK_NATIONAL_HEALTH_SERVICE_NUMBER','CA_HEALTH_NUMBER','IN_AADHAAR','IN_VOTER_NUMBER', "CUSTOM_FUZZY"]

# Add custom spacy recognisers to the Comprehend list, so that local Spacy model can be used to pick up e.g. titles, streetnames, UK postcodes that are sometimes missed by comprehend
chosen_comprehend_entities.extend(custom_entities)
full_comprehend_entity_list.extend(custom_entities)

# Entities for local PII redaction option
chosen_redact_entities = ["TITLES", "PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "STREETNAME", "UKPOSTCODE", "CUSTOM"]

full_entity_list = ["TITLES", "PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "STREETNAME", "UKPOSTCODE", 'CREDIT_CARD', 'CRYPTO', 'DATE_TIME', 'IBAN_CODE', 'IP_ADDRESS', 'NRP', 'LOCATION', 'MEDICAL_LICENSE', 'URL', 'UK_NHS', 'CUSTOM', 'CUSTOM_FUZZY']

log_file_name = 'log.csv'

file_input_height = 200

if RUN_AWS_FUNCTIONS == "1":
    default_ocr_val = textract_option
    default_pii_detector = local_pii_detector
else:
    default_ocr_val = text_ocr_option
    default_pii_detector = local_pii_detector

# Create the gradio interface
app = gr.Blocks(theme = gr.themes.Base(), fill_width=True)

with app:

    ###
    # STATE VARIABLES
    ###
    
    # Pymupdf doc and all image annotations objects need to be stored as State objects as they do not have a standard Gradio component equivalent
    pdf_doc_state = gr.State([])    
    all_image_annotations_state = gr.State([])   

    
    all_decision_process_table_state = gr.Dataframe(value=pd.DataFrame(), headers=None, col_count=0, row_count = (0, "dynamic"),  label="all_decision_process_table", visible=False, type="pandas", wrap=True)
    review_file_state = gr.Dataframe(value=pd.DataFrame(), headers=None, col_count=0, row_count = (0, "dynamic"), label="review_file_df", visible=False, type="pandas", wrap=True)

    session_hash_state = gr.Textbox(label= "session_hash_state", value="", visible=False)
    host_name_textbox = gr.Textbox(label= "host_name_textbox", value=HOST_NAME, visible=False)
    s3_output_folder_state = gr.Textbox(label= "s3_output_folder_state", value="", visible=False)
    session_output_folder_textbox = gr.Textbox(value = SESSION_OUTPUT_FOLDER, label="session_output_folder_textbox", visible=False)
    output_folder_textbox = gr.Textbox(value = OUTPUT_FOLDER, label="output_folder_textbox", visible=False)
    input_folder_textbox = gr.Textbox(value = INPUT_FOLDER, label="input_folder_textbox", visible=False)

    first_loop_state = gr.Checkbox(label="first_loop_state", value=True, visible=False)
    second_loop_state = gr.Checkbox(label="second_loop_state", value=False, visible=False)
    do_not_save_pdf_state = gr.Checkbox(label="do_not_save_pdf_state", value=False, visible=False)
    save_pdf_state = gr.Checkbox(label="save_pdf_state", value=True, visible=False)

    prepared_pdf_state = gr.Dropdown(label = "prepared_pdf_list", value="", allow_custom_value=True,visible=False)
    document_cropboxes = gr.Dropdown(label = "document_cropboxes", value="", allow_custom_value=True,visible=False)
    page_sizes = gr.Dropdown(label = "page_sizes", value="", allow_custom_value=True, visible=False)
    images_pdf_state = gr.Dropdown(label = "images_pdf_list", value="", allow_custom_value=True,visible=False)
    all_img_details_state = gr.State([])
    
    output_image_files_state = gr.Dropdown(label = "output_image_files_list", value="", allow_custom_value=True,visible=False)
    output_file_list_state = gr.Dropdown(label = "output_file_list", value="", allow_custom_value=True,visible=False)
    text_output_file_list_state = gr.Dropdown(label = "text_output_file_list", value="", allow_custom_value=True,visible=False)
    log_files_output_list_state = gr.Dropdown(label = "log_files_output_list", value="", allow_custom_value=True,visible=False)
    duplication_file_path_outputs_list_state = gr.Dropdown(label = "duplication_file_path_outputs_list", value=[], multiselect=True, allow_custom_value=True,visible=False)

    # Backup versions of these objects in case you make a mistake
    backup_review_state = gr.Dataframe(visible=False)
    backup_image_annotations_state = gr.State([])
    backup_recogniser_entity_dataframe_base = gr.Dataframe(visible=False)    
    
    # Logging state
    feedback_logs_state = gr.Textbox(label= "feedback_logs_state", value=FEEDBACK_LOGS_FOLDER + log_file_name, visible=False)
    feedback_s3_logs_loc_state = gr.Textbox(label= "feedback_s3_logs_loc_state", value=FEEDBACK_LOGS_FOLDER, visible=False)
    access_logs_state = gr.Textbox(label= "access_logs_state", value=ACCESS_LOGS_FOLDER + log_file_name, visible=False)
    access_s3_logs_loc_state = gr.Textbox(label= "access_s3_logs_loc_state", value=ACCESS_LOGS_FOLDER, visible=False)
    usage_logs_state = gr.Textbox(label= "usage_logs_state", value=USAGE_LOGS_FOLDER + log_file_name, visible=False)
    usage_s3_logs_loc_state = gr.Textbox(label= "usage_s3_logs_loc_state", value=USAGE_LOGS_FOLDER, visible=False)

    session_hash_textbox = gr.Textbox(label= "session_hash_textbox", value="", visible=False)
    textract_metadata_textbox = gr.Textbox(label = "textract_metadata_textbox", value="", visible=False)
    comprehend_query_number = gr.Number(label = "comprehend_query_number", value=0, visible=False)
    textract_query_number = gr.Number(label = "textract_query_number", value=0, visible=False)
    
    doc_full_file_name_textbox = gr.Textbox(label = "doc_full_file_name_textbox", value="", visible=False)
    doc_file_name_no_extension_textbox = gr.Textbox(label = "doc_full_file_name_textbox", value="", visible=False)
    blank_doc_file_name_no_extension_textbox_for_logs = gr.Textbox(label = "doc_full_file_name_textbox", value="", visible=False) # Left blank for when user does not want to report file names
    doc_file_name_with_extension_textbox = gr.Textbox(label = "doc_file_name_with_extension_textbox", value="", visible=False)
    doc_file_name_textbox_list = gr.Dropdown(label = "doc_file_name_textbox_list", value="", allow_custom_value=True,visible=False)
    latest_review_file_path = gr.Textbox(label = "latest_review_file_path", value="", visible=False) # Latest review file path output from redaction
    latest_ocr_file_path = gr.Textbox(label = "latest_ocr_file_path", value="", visible=False) # Latest ocr file path output from text extraction

    data_full_file_name_textbox = gr.Textbox(label = "data_full_file_name_textbox", value="", visible=False)
    data_file_name_no_extension_textbox = gr.Textbox(label = "data_full_file_name_textbox", value="", visible=False)
    data_file_name_with_extension_textbox = gr.Textbox(label = "data_file_name_with_extension_textbox", value="", visible=False)
    data_file_name_textbox_list = gr.Dropdown(label = "data_file_name_textbox_list", value="", allow_custom_value=True,visible=False)

    # Constants just to use with the review dropdowns for filtering by various columns
    label_name_const = gr.Textbox(label="label_name_const", value="label", visible=False)
    text_name_const = gr.Textbox(label="text_name_const", value="text", visible=False)
    page_name_const = gr.Textbox(label="page_name_const", value="page", visible=False)
    
    actual_time_taken_number = gr.Number(label = "actual_time_taken_number", value=0.0, precision=1, visible=False) # This keeps track of the time taken to redact files for logging purposes.
    annotate_previous_page = gr.Number(value=0, label="Previous page", precision=0, visible=False) # Keeps track of the last page that the annotator was on
    s3_logs_output_textbox = gr.Textbox(label="Feedback submission logs", visible=False)

    ## Annotator zoom value
    annotator_zoom_number = gr.Number(label = "Current annotator zoom level", value=100, precision=0, visible=False)
    zoom_true_bool = gr.Checkbox(label="zoom_true_bool", value=True, visible=False)
    zoom_false_bool = gr.Checkbox(label="zoom_false_bool", value=False, visible=False)

    clear_all_page_redactions = gr.Checkbox(label="clear_all_page_redactions", value=True, visible=False)
    prepare_for_review_bool = gr.Checkbox(label="prepare_for_review_bool", value=True, visible=False)
    prepare_for_review_bool_false = gr.Checkbox(label="prepare_for_review_bool_false", value=False, visible=False)
    prepare_images_bool_false = gr.Checkbox(label="prepare_images_bool_false", value=False, visible=False)

    ## Settings page variables
    default_deny_list_file_name = "default_deny_list.csv"
    default_deny_list_loc = OUTPUT_FOLDER + "/" + default_deny_list_file_name    
    in_deny_list_text_in = gr.Textbox(value="deny_list", visible=False)

    fully_redacted_list_file_name = "default_fully_redacted_list.csv"
    fully_redacted_list_loc = OUTPUT_FOLDER + "/" + fully_redacted_list_file_name    
    in_fully_redacted_text_in = gr.Textbox(value="fully_redacted_pages_list", visible=False)

    # S3 settings for default allow list load
    s3_default_bucket = gr.Textbox(label = "Default S3 bucket", value=DOCUMENT_REDACTION_BUCKET, visible=False)
    s3_default_allow_list_file = gr.Textbox(label = "Default allow list file", value=S3_ALLOW_LIST_PATH, visible=False)
    default_allow_list_output_folder_location = gr.Textbox(label = "Output default allow list location", value=OUTPUT_ALLOW_LIST_PATH, visible=False)

    s3_bulk_textract_default_bucket = gr.Textbox(label = "Default Textract bulk S3 bucket", value=TEXTRACT_BULK_ANALYSIS_BUCKET, visible=False)
    s3_bulk_textract_input_subfolder = gr.Textbox(label = "Default Textract bulk S3 input folder", value=TEXTRACT_BULK_ANALYSIS_INPUT_SUBFOLDER, visible=False)
    s3_bulk_textract_output_subfolder = gr.Textbox(label = "Default Textract bulk S3 output folder", value=TEXTRACT_BULK_ANALYSIS_OUTPUT_SUBFOLDER, visible=False)
    successful_textract_api_call_number = gr.Number(precision=0, value=0, visible=False)

    load_s3_bulk_textract_logs_bool = gr.Textbox(label = "Load Textract logs or not", value=LOAD_PREVIOUS_TEXTRACT_JOBS_S3, visible=False)    
    s3_bulk_textract_logs_subfolder = gr.Textbox(label = "Default Textract bulk S3 input folder", value=TEXTRACT_JOBS_S3_LOC, visible=False)
    local_bulk_textract_logs_subfolder = gr.Textbox(label = "Default Textract bulk S3 output folder", value=TEXTRACT_JOBS_LOCAL_LOC, visible=False)       

    s3_default_cost_codes_file = gr.Textbox(label = "Default cost centre file", value=S3_COST_CODES_PATH, visible=False)
    default_cost_codes_output_folder_location = gr.Textbox(label = "Output default cost centre location", value=OUTPUT_COST_CODES_PATH, visible=False)
    enforce_cost_code_textbox = gr.Textbox(label = "Enforce cost code textbox", value=ENFORCE_COST_CODES, visible=False)
    default_cost_code_textbox = gr.Textbox(label = "Default cost code textbox", value=DEFAULT_COST_CODE, visible=False)

    # Base tables that are not modified subsequent to load
    recogniser_entity_dataframe_base = gr.Dataframe(pd.DataFrame(data={"page":[], "label":[], "text":[]}), col_count=3, type="pandas", visible=False, label="recogniser_entity_dataframe_base", show_search="filter", headers=["page", "label", "text"], show_fullscreen_button=True, wrap=True)
    all_line_level_ocr_results_df_base = gr.Dataframe(value=pd.DataFrame(), headers=["page", "text"], col_count=(2, 'fixed'), row_count = (0, "dynamic"),  label="All OCR results", type="pandas", wrap=True, show_fullscreen_button=True, show_search='filter', show_label=False, show_copy_button=True, visible=False)
    all_line_level_ocr_results_df_placeholder = gr.Dataframe(visible=False)
    cost_code_dataframe_base = gr.Dataframe(value=pd.DataFrame(), row_count = (0, "dynamic"), label="Cost codes", type="pandas", interactive=True, show_fullscreen_button=True, show_copy_button=True, show_search='filter', wrap=True, max_height=200, visible=False)

    # Duplicate page detection
    in_duplicate_pages_text = gr.Textbox(label="in_duplicate_pages_text", visible=False)
    duplicate_pages_df = gr.Dataframe(value=pd.DataFrame(), headers=None, col_count=0, row_count = (0, "dynamic"), label="duplicate_pages_df", visible=False, type="pandas", wrap=True)

    # Tracking variables for current page (not visible)
    current_loop_page_number = gr.Number(value=0,precision=0, interactive=False, label = "Last redacted page in document", visible=False)
    page_break_return = gr.Checkbox(value = False, label="Page break reached", visible=False)

    # Placeholders for elements that may be made visible later below depending on environment variables
    cost_code_dataframe = gr.Dataframe(value=pd.DataFrame(), type="pandas", visible=False, wrap=True)
    cost_code_choice_drop = gr.Dropdown(value=DEFAULT_COST_CODE, label="Choose cost code for analysis. Please contact Finance if you can't find your cost code in the given list.", choices=[DEFAULT_COST_CODE], allow_custom_value=False, visible=False)

    textract_output_found_checkbox = gr.Checkbox(value= False, label="Existing Textract output file found", interactive=False, visible=False)
    total_pdf_page_count = gr.Number(label = "Total page count", value=0, visible=False)
    estimated_aws_costs_number = gr.Number(label = "Approximate AWS Textract and/or Comprehend cost ($)", value=0, visible=False, precision=2)
    estimated_time_taken_number = gr.Number(label = "Approximate time taken to extract text/redact (minutes)", value=0, visible=False, precision=2)

    only_extract_text_radio = gr.Checkbox(value=False, label="Only extract text (no redaction)", visible=False)

    # Textract API call placeholders in case option not selected in config
                
    job_name_textbox = gr.Textbox(value="", label="Bulk Textract call", visible=False)
    send_document_to_textract_api_btn = gr.Button("Analyse document with AWS Textract", variant="primary", visible=False)

    job_id_textbox = gr.Textbox(label = "Latest job ID for bulk document analysis", value='', visible=False)              
    check_state_of_textract_api_call_btn = gr.Button("Check state of Textract document job and download", variant="secondary", visible=False)
    job_current_status = gr.Textbox(value="", label="Analysis job current status", visible=False)
    job_type_dropdown = gr.Dropdown(value="document_text_detection", choices=["document_text_detection", "document_analysis"], label="Job type of Textract analysis job", allow_custom_value=False, visible=False)
    textract_job_detail_df = gr.Dataframe(pd.DataFrame(columns=['job_id','file_name','job_type','signature_extraction','s3_location','job_date_time']), label="Previous job details", visible=False, type="pandas", wrap=True)
    selected_job_id_row = gr.Dataframe(pd.DataFrame(columns=['job_id','file_name','job_type','signature_extraction','s3_location','job_date_time']), label="Selected job id row", visible=False, type="pandas", wrap=True)
    is_a_textract_api_call = gr.Checkbox(value=False, label="is_a_textract_api_call", visible=False)
    job_output_textbox = gr.Textbox(value="", label="Textract call outputs", visible=False)

    textract_job_output_file = gr.File(label="Textract job output files", height=file_input_height, visible=False)

    ###
    # UI DESIGN
    ###

    gr.Markdown(
    """# Document redaction



    Redact personally identifiable information (PII) from documents (PDF, images), open text, or tabular data (XLSX/CSV/Parquet). Please see the [User Guide](https://github.com/seanpedrick-case/doc_redaction/blob/main/README.md) for a walkthrough on how to use the app. Below is a very brief overview.

    

    To identify text in documents, the 'Local' text/OCR image analysis uses spacy/tesseract, and works ok for documents with typed text. If available, choose 'AWS Textract' to redact more complex elements e.g. signatures or handwriting. Then, choose a method for PII identification. 'Local' is quick and gives good results if you are primarily looking for a custom list of terms to redact (see Redaction settings). If available, AWS Comprehend gives better results at a small cost.

    

    After redaction, review suggested redactions on the 'Review redactions' tab. The original pdf can be uploaded here alongside a '...review_file.csv' to continue a previous redaction/review task. See the 'Redaction settings' tab to choose which pages to redact, the type of information to redact (e.g. people, places), or custom terms to always include/ exclude from redaction.



    NOTE: The app is not 100% accurate, and it will miss some personal information. It is essential that all outputs are reviewed **by a human** before using the final outputs.""")

    ###
    # REDACTION PDF/IMAGES TABLE
    ###
    with gr.Tab("Redact PDFs/images"):
        with gr.Accordion("Redact document", open = True):
            in_doc_files = gr.File(label="Choose a document or image file (PDF, JPG, PNG)", file_count= "multiple", file_types=['.pdf', '.jpg', '.png', '.json', '.zip'], height=file_input_height)

            text_extract_method_radio = gr.Radio(label="""Choose text extraction method. Local options are lower quality but cost nothing - they may be worth a try if you are willing to spend some time reviewing outputs. AWS Textract has a cost per page - £2.66 ($3.50) per 1,000 pages with signature detection (default), £1.14 ($1.50) without. Go to Redaction settings - AWS Textract options to remove signature detection.""", value = default_ocr_val, choices=[text_ocr_option, tesseract_ocr_option, textract_option])

            with gr.Accordion("AWS Textract signature detection (default is on)", open = False):
                handwrite_signature_checkbox = gr.CheckboxGroup(label="AWS Textract extraction settings", choices=["Extract handwriting", "Extract signatures"], value=["Extract handwriting", "Extract signatures"])

            with gr.Row(equal_height=True):
                pii_identification_method_drop = gr.Radio(label = """Choose personal information detection method. The local model is lower quality but costs nothing - it may be worth a try if you are willing to spend some time reviewing outputs, or if you are only interested in searching for custom search terms (see Redaction settings - custom deny list). AWS Comprehend has a cost of around £0.0075 ($0.01) per 10,000 characters.""", value = default_pii_detector, choices=[no_redaction_option, local_pii_detector, aws_pii_detector])
            
            if SHOW_COSTS == "True":
                with gr.Accordion("Estimated costs and time taken", open = True, visible=True):                        
                    with gr.Row(equal_height=True):
                        textract_output_found_checkbox = gr.Checkbox(value= False, label="Existing Textract output file found", interactive=False, visible=True)
                        total_pdf_page_count = gr.Number(label = "Total page count", value=0, visible=True)
                        estimated_aws_costs_number = gr.Number(label = "Approximate AWS Textract and/or Comprehend cost (£)", value=0.00, precision=2, visible=True)
                        estimated_time_taken_number = gr.Number(label = "Approximate time taken to extract text/redact (minutes)", value=0, visible=True, precision=2)             
                
            if GET_COST_CODES == "True" or ENFORCE_COST_CODES == "True":
                with gr.Accordion("Apply cost code", open = True, visible=True):
                    with gr.Row():
                        cost_code_dataframe = gr.Dataframe(value=pd.DataFrame(), row_count = (0, "dynamic"), label="Existing cost codes", type="pandas", interactive=True, show_fullscreen_button=True, show_copy_button=True, show_search='filter', visible=True, wrap=True, max_height=200)
                        with gr.Column():
                            reset_cost_code_dataframe_button = gr.Button(value="Reset code code table filter")
                            cost_code_choice_drop = gr.Dropdown(value=DEFAULT_COST_CODE, label="Choose cost code for analysis", choices=[DEFAULT_COST_CODE], allow_custom_value=False, visible=True)

            if SHOW_BULK_TEXTRACT_CALL_OPTIONS == "True":
                with gr.Accordion("Submit whole document to AWS Textract API (quicker, max 3,000 pages per document)", open = False, visible=True):
                    with gr.Row(equal_height=True):
                        gr.Markdown("""Document will be submitted to AWS Textract API service to extract all text in the document. Processing will take place on (secure) AWS servers, and outputs will be stored on S3 for up to 7 days. To download the results, click 'Check status' below and they will be downloaded if ready.""")
                    with gr.Row(equal_height=True):
                        send_document_to_textract_api_btn = gr.Button("Analyse document with AWS Textract API call", variant="primary", visible=True)                        
                    with gr.Row(equal_height=False):       
                        with gr.Column(scale=2):                 
                            textract_job_detail_df = gr.Dataframe(label="Previous job details", visible=True, type="pandas", wrap=True, interactive=True, row_count=(0, 'fixed'), col_count=(6,'fixed'), static_columns=[0,1,2,3,4,5])
                        with gr.Column(scale=1):
                            job_id_textbox = gr.Textbox(label = "Job ID to check status", value='', visible=True)     
                            check_state_of_textract_api_call_btn = gr.Button("Check status of Textract job and download", variant="secondary", visible=True)
                    with gr.Row():
                        job_current_status = gr.Textbox(value="", label="Analysis job current status", visible=True)
                        textract_job_output_file = gr.File(label="Textract job output files", height=100, visible=True)           

            gr.Markdown("""If you only want to redact certain pages, or certain entities (e.g. just email addresses, or a custom list of terms), please go to the Redaction Settings tab.""")      
            document_redact_btn = gr.Button("Extract text and redact document", variant="primary", scale = 4)
        
        with gr.Row():
            redaction_output_summary_textbox = gr.Textbox(label="Output summary", scale=1)
            output_file = gr.File(label="Output files", scale = 2)#, height=file_input_height)
            latest_file_completed_text = gr.Number(value=0, label="Number of documents redacted", interactive=False, visible=False)

        # Feedback elements are invisible until revealed by redaction action
        pdf_feedback_title = gr.Markdown(value="## Please give feedback", visible=False)
        pdf_feedback_radio = gr.Radio(label = "Quality of results", choices=["The results were good", "The results were not good"], visible=False)
        pdf_further_details_text = gr.Textbox(label="Please give more detailed feedback about the results:", visible=False)
        pdf_submit_feedback_btn = gr.Button(value="Submit feedback", visible=False)
        
    ###
    # REVIEW REDACTIONS TAB
    ###
    with gr.Tab("Review redactions", id="tab_object_annotation"):

        with gr.Accordion(label = "Review PDF redactions", open=True):
            output_review_files = gr.File(label="Upload original PDF and 'review_file' csv here to review suggested redactions. The 'ocr_output' file can also be optionally provided for text search.", file_count='multiple', height=file_input_height)
            upload_previous_review_file_btn = gr.Button("Review PDF and 'review file' csv provided above", variant="secondary")                   
        with gr.Row():
            annotate_zoom_in = gr.Button("Zoom in", visible=False)
            annotate_zoom_out = gr.Button("Zoom out", visible=False)        
        with gr.Row():
            clear_all_redactions_on_page_btn = gr.Button("Clear all redactions on page", visible=False) 

        with gr.Row():
            with gr.Column(scale=2):
                with gr.Row(equal_height=True):                       
                    annotation_last_page_button = gr.Button("Previous page", scale = 4)
                    annotate_current_page = gr.Number(value=0, label="Current page", precision=0, scale = 2, min_width=50)
                    annotate_max_pages = gr.Number(value=0, label="Total pages", precision=0, interactive=False, scale = 2, min_width=50)
                    annotation_next_page_button = gr.Button("Next page", scale = 4)

                zoom_str = str(annotator_zoom_number) + '%'

                annotator = image_annotator(
                    label="Modify redaction boxes",
                    label_list=["Redaction"],
                    label_colors=[(0, 0, 0)],
                    show_label=False,
                    height=zoom_str,
                    width=zoom_str,
                    box_min_size=1,
                    box_selected_thickness=2,
                    handle_size=4,
                    sources=None,#["upload"],
                    show_clear_button=False,
                    show_share_button=False,
                    show_remove_button=False,
                    handles_cursor=True,
                    interactive=False
                )

                with gr.Row(equal_height=True):
                    annotation_last_page_button_bottom = gr.Button("Previous page", scale = 4)
                    annotate_current_page_bottom = gr.Number(value=0, label="Current page", precision=0, interactive=True, scale = 2, min_width=50)
                    annotate_max_pages_bottom = gr.Number(value=0, label="Total pages", precision=0, interactive=False, scale = 2, min_width=50)
                    annotation_next_page_button_bottom = gr.Button("Next page", scale = 4)

            with gr.Column(scale=1):
                annotation_button_apply = gr.Button("Apply revised redactions to PDF", variant="primary")
                update_current_page_redactions_btn = gr.Button(value="Save changes on current page to file", variant="primary")
                with gr.Accordion("Search suggested redactions", open=True):
                    with gr.Row(equal_height=True):
                        recogniser_entity_dropdown = gr.Dropdown(label="Redaction category", value="ALL", allow_custom_value=True)
                        page_entity_dropdown = gr.Dropdown(label="Page", value="ALL", allow_custom_value=True)                    
                    text_entity_dropdown = gr.Dropdown(label="Text", value="ALL", allow_custom_value=True)
                    recogniser_entity_dataframe = gr.Dataframe(pd.DataFrame(data={"page":[], "label":[], "text":[]}), col_count=(3,"fixed"), type="pandas", label="Search results. Click to go to page", headers=["page", "label", "text"], show_fullscreen_button=True, wrap=True, max_height=400)

                    with gr.Row(equal_height=True):
                        exclude_selected_row_btn = gr.Button(value="Exclude specific row from redactions")
                        exclude_selected_btn = gr.Button(value="Exclude all items in table from redactions")
                    with gr.Row(equal_height=True):
                        reset_dropdowns_btn = gr.Button(value="Reset filters")
                        
                    undo_last_removal_btn = gr.Button(value="Undo last element removal")
                    
                    selected_entity_dataframe_row = gr.Dataframe(pd.DataFrame(data={"page":[], "label":[], "text":[]}), col_count=3, type="pandas", visible=False, label="selected_entity_dataframe_row", headers=["page", "label", "text"], show_fullscreen_button=True, wrap=True)

                with gr.Accordion("Search all extracted text", open=True):                    
                    all_line_level_ocr_results_df = gr.Dataframe(value=pd.DataFrame(), headers=["page", "text"], col_count=(2, 'fixed'), row_count = (0, "dynamic"),  label="All OCR results", visible=True, type="pandas", wrap=True, show_fullscreen_button=True, show_search='filter', show_label=False, show_copy_button=True, max_height=400)
                    reset_all_ocr_results_btn = gr.Button(value="Reset OCR output table filter")      
        
        with gr.Accordion("Convert review files loaded above to Adobe format, or convert from Adobe format to review file", open = False):
            convert_review_file_to_adobe_btn = gr.Button("Convert review file to Adobe comment format", variant="primary")
            adobe_review_files_out = gr.File(label="Output Adobe comment files will appear here. If converting from .xfdf file to review_file.csv, upload the original pdf with the xfdf file here then click Convert below.", file_count='multiple', file_types=['.csv', '.xfdf', '.pdf']) 
            convert_adobe_to_review_file_btn = gr.Button("Convert Adobe .xfdf comment file to review_file.csv", variant="secondary")

    ###
    # IDENTIFY DUPLICATE PAGES TAB
    ###
    with gr.Tab(label="Identify duplicate pages"):
        with gr.Accordion("Identify duplicate pages to redact", open = True):            
            in_duplicate_pages = gr.File(label="Upload multiple 'ocr_output.csv' data files from redaction jobs here to compare", file_count="multiple", height=file_input_height, file_types=['.csv'])
            with gr.Row():
                duplicate_threshold_value = gr.Number(value=0.9, label="Minimum similarity to be considered a duplicate (maximum = 1)", scale =1)
                find_duplicate_pages_btn = gr.Button(value="Identify duplicate pages", variant="primary", scale = 4)                

            duplicate_pages_out = gr.File(label="Duplicate pages analysis output", file_count="multiple", height=file_input_height, file_types=['.csv'])

    ###
    # TEXT / TABULAR DATA TAB
    ###
    with gr.Tab(label="Open text or Excel/csv files"):
        gr.Markdown("""### Choose open text or a tabular data file (xlsx or csv) to redact.""")    
        with gr.Accordion("Paste open text", open = False):
            in_text = gr.Textbox(label="Enter open text", lines=10)
        with gr.Accordion("Upload xlsx or csv files", open = True):
            in_data_files = gr.File(label="Choose Excel or csv files", file_count= "multiple", file_types=['.xlsx', '.xls', '.csv', '.parquet', '.csv.gz'], height=file_input_height)
        
        in_excel_sheets = gr.Dropdown(choices=["Choose Excel sheets to anonymise"], multiselect = True, label="Select Excel sheets that you want to anonymise (showing sheets present across all Excel files).", visible=False, allow_custom_value=True)

        in_colnames = gr.Dropdown(choices=["Choose columns to anonymise"], multiselect = True, label="Select columns that you want to anonymise (showing columns present across all files).")

        pii_identification_method_drop_tabular = gr.Radio(label = "Choose PII detection method. AWS Comprehend has a cost of approximately $0.01 per 10,000 characters.", value = default_pii_detector, choices=[local_pii_detector, aws_pii_detector])
        
        tabular_data_redact_btn = gr.Button("Redact text/data files", variant="primary")
        
        with gr.Row():
            text_output_summary = gr.Textbox(label="Output result")
            text_output_file = gr.File(label="Output files")
            text_tabular_files_done = gr.Number(value=0, label="Number of tabular files redacted", interactive=False, visible=False)

        # Feedback elements are invisible until revealed by redaction action
        data_feedback_title = gr.Markdown(value="## Please give feedback", visible=False)
        data_feedback_radio = gr.Radio(label="Please give some feedback about the results of the redaction. A reminder that the app is only expected to identify about 60% of personally identifiable information in a given (typed) document.",
                choices=["The results were good", "The results were not good"], visible=False, show_label=True)
        data_further_details_text = gr.Textbox(label="Please give more detailed feedback about the results:", visible=False)
        data_submit_feedback_btn = gr.Button(value="Submit feedback", visible=False)

    ###
    # SETTINGS TAB
    ###
    with gr.Tab(label="Redaction settings"):       
        with gr.Accordion("Custom allow, deny, and full page redaction lists", open = True):
            with gr.Row():
                with gr.Column():
                    in_allow_list = gr.File(label="Import allow list file - csv table with one column of a different word/phrase on each row (case insensitive). Terms in this file will not be redacted.", file_count="multiple", height=file_input_height)
                    in_allow_list_text = gr.Textbox(label="Custom allow list load status")
                with gr.Column():
                    in_deny_list = gr.File(label="Import custom deny list - csv table with one column of a different word/phrase on each row (case insensitive). Terms in this file will always be redacted.", file_count="multiple", height=file_input_height)
                    in_deny_list_text = gr.Textbox(label="Custom deny list load status")
                with gr.Column():
                    in_fully_redacted_list = gr.File(label="Import fully redacted pages list - csv table with one column of page numbers on each row. Page numbers in this file will be fully redacted.", file_count="multiple", height=file_input_height)
                    in_fully_redacted_list_text = gr.Textbox(label="Fully redacted page list load status")
            with gr.Accordion("Manually modify custom allow, deny, and full page redaction lists (NOTE: you need to press Enter after modifying/adding an entry to the lists to apply them)", open = False):
                with gr.Row():
                    in_allow_list_state = gr.Dataframe(value=pd.DataFrame(), headers=["allow_list"], col_count=(1, "fixed"), row_count = (0, "dynamic"), label="Allow list", visible=True, type="pandas", interactive=True, show_fullscreen_button=True, show_copy_button=True, wrap=True)
                    in_deny_list_state = gr.Dataframe(value=pd.DataFrame(), headers=["deny_list"], col_count=(1, "fixed"), row_count = (0, "dynamic"), label="Deny list", visible=True, type="pandas", interactive=True, show_fullscreen_button=True, show_copy_button=True, wrap=True)
                    in_fully_redacted_list_state = gr.Dataframe(value=pd.DataFrame(), headers=["fully_redacted_pages_list"], col_count=(1, "fixed"), row_count = (0, "dynamic"), label="Fully redacted pages", visible=True, type="pandas", interactive=True, show_fullscreen_button=True, show_copy_button=True, datatype='number', wrap=True)
            
        with gr.Accordion("Select entity types to redact", open = True):
                in_redact_entities = gr.Dropdown(value=chosen_redact_entities, choices=full_entity_list, multiselect=True, label="Local PII identification model (click empty space in box for full list)")
                in_redact_comprehend_entities = gr.Dropdown(value=chosen_comprehend_entities, choices=full_comprehend_entity_list, multiselect=True, label="AWS Comprehend PII identification model (click empty space in box for full list)")

                with gr.Row():
                    max_fuzzy_spelling_mistakes_num = gr.Number(label="Maximum number of spelling mistakes allowed for fuzzy matching (CUSTOM_FUZZY entity).", value=1, minimum=0, maximum=9, precision=0)
                    match_fuzzy_whole_phrase_bool = gr.Checkbox(label="Should fuzzy search match on entire phrases in deny list (as opposed to each word individually)?", value=True)

        with gr.Accordion("Redact only selected pages", open = False):
            with gr.Row():
                page_min = gr.Number(precision=0,minimum=0,maximum=9999, label="Lowest page to redact")
                page_max = gr.Number(precision=0,minimum=0,maximum=9999, label="Highest page to redact")

        with gr.Accordion("AWS options", open = False):
            #with gr.Row():
            in_redact_language = gr.Dropdown(value = REDACTION_LANGUAGE, choices = [REDACTION_LANGUAGE], label="Redaction language", multiselect=False, visible=False)

            with gr.Row():
                aws_access_key_textbox = gr.Textbox(value='', label="AWS access key for account with permissions for AWS Textract and Comprehend", visible=True, type="password")
                aws_secret_key_textbox = gr.Textbox(value='', label="AWS secret key for account with permissions for AWS Textract and Comprehend", visible=True, type="password")

        with gr.Accordion("Settings for open text or xlsx/csv files", open = False):
            anon_strat = gr.Radio(choices=["replace with 'REDACTED'", "replace with <ENTITY_NAME>", "redact completely", "hash", "mask", "encrypt", "fake_first_name"], label="Select an anonymisation method.", value = "replace with 'REDACTED'")
            
        log_files_output = gr.File(label="Log file output", interactive=False)

        with gr.Accordion("Combine multiple review files", open = False):
            multiple_review_files_in_out = gr.File(label="Combine multiple review_file.csv files together here.", file_count='multiple', file_types=['.csv']) 
            merge_multiple_review_files_btn = gr.Button("Merge multiple review files into one", variant="primary")

        with gr.Accordion("View all output files from this session", open = False):
            all_output_files_btn = gr.Button("Click here to view all output files", variant="secondary")
            all_output_files = gr.File(label="All files in output folder", file_count='multiple', file_types=['.csv'], interactive=False)

    ###
    ### UI INTERACTION ###
    ###

    ###
    # PDF/IMAGE REDACTION
    ###
    # Recalculate estimated costs based on changes to inputs
    if SHOW_COSTS == 'True':
        # Calculate costs
        total_pdf_page_count.change(calculate_aws_costs, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_aws_costs_number])
        text_extract_method_radio.change(calculate_aws_costs, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_aws_costs_number])
        pii_identification_method_drop.change(calculate_aws_costs, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox,  pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_aws_costs_number])
        handwrite_signature_checkbox.change(calculate_aws_costs, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox,  pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_aws_costs_number])
        textract_output_found_checkbox.change(calculate_aws_costs, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox,  pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_aws_costs_number])
        only_extract_text_radio.change(calculate_aws_costs, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox,  pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_aws_costs_number])

        # Calculate time taken
        total_pdf_page_count.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio,          pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_time_taken_number])
        text_extract_method_radio.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_time_taken_number])
        pii_identification_method_drop.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio,  pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_time_taken_number])
        handwrite_signature_checkbox.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_time_taken_number])
        textract_output_found_checkbox.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio, handwrite_signature_checkbox,  pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_time_taken_number])
        only_extract_text_radio.change(calculate_time_taken, inputs=[total_pdf_page_count, text_extract_method_radio, pii_identification_method_drop, textract_output_found_checkbox, only_extract_text_radio], outputs=[estimated_time_taken_number])

    # Allow user to select items from cost code dataframe for cost code
    if SHOW_COSTS=="True" and (GET_COST_CODES == "True" or ENFORCE_COST_CODES == "True"):
        cost_code_dataframe.select(df_select_callback_cost, inputs=[cost_code_dataframe], outputs=[cost_code_choice_drop])
        reset_cost_code_dataframe_button.click(reset_base_dataframe, inputs=[cost_code_dataframe_base], outputs=[cost_code_dataframe])

        cost_code_choice_drop.select(update_cost_code_dataframe_from_dropdown_select, inputs=[cost_code_choice_drop, cost_code_dataframe_base], outputs=[cost_code_dataframe])

    in_doc_files.upload(fn=get_input_file_names, inputs=[in_doc_files], outputs=[doc_file_name_no_extension_textbox, doc_file_name_with_extension_textbox, doc_full_file_name_textbox, doc_file_name_textbox_list, total_pdf_page_count]).\
    success(fn = prepare_image_or_pdf, inputs=[in_doc_files, text_extract_method_radio, latest_file_completed_text, redaction_output_summary_textbox, first_loop_state, annotate_max_pages, all_image_annotations_state, prepare_for_review_bool_false, in_fully_redacted_list_state, output_folder_textbox, input_folder_textbox, prepare_images_bool_false], outputs=[redaction_output_summary_textbox, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state, all_image_annotations_state, review_file_state, document_cropboxes, page_sizes, textract_output_found_checkbox, all_img_details_state, all_line_level_ocr_results_df_base]).\
    success(fn=check_for_existing_textract_file, inputs=[doc_file_name_no_extension_textbox, output_folder_textbox], outputs=[textract_output_found_checkbox])

    # Run redaction function
    document_redact_btn.click(fn = reset_state_vars, outputs=[all_image_annotations_state, all_line_level_ocr_results_df_base, all_decision_process_table_state, comprehend_query_number, textract_metadata_textbox, annotator, output_file_list_state, log_files_output_list_state, recogniser_entity_dataframe, recogniser_entity_dataframe_base, pdf_doc_state, duplication_file_path_outputs_list_state, redaction_output_summary_textbox, is_a_textract_api_call]).\
        success(fn= enforce_cost_codes, inputs=[enforce_cost_code_textbox, cost_code_choice_drop, cost_code_dataframe_base]).\
        success(fn= choose_and_run_redactor, inputs=[in_doc_files, prepared_pdf_state, images_pdf_state, in_redact_language, in_redact_entities, in_redact_comprehend_entities, text_extract_method_radio, in_allow_list_state, in_deny_list_state, in_fully_redacted_list_state, latest_file_completed_text, redaction_output_summary_textbox, output_file_list_state, log_files_output_list_state, first_loop_state, page_min, page_max, actual_time_taken_number, handwrite_signature_checkbox, textract_metadata_textbox, all_image_annotations_state, all_line_level_ocr_results_df_base, all_decision_process_table_state, pdf_doc_state, current_loop_page_number, page_break_return, pii_identification_method_drop, comprehend_query_number, max_fuzzy_spelling_mistakes_num, match_fuzzy_whole_phrase_bool, aws_access_key_textbox, aws_secret_key_textbox, annotate_max_pages, review_file_state, output_folder_textbox, document_cropboxes, page_sizes, textract_output_found_checkbox, only_extract_text_radio, duplication_file_path_outputs_list_state, latest_review_file_path, input_folder_textbox, textract_query_number, latest_ocr_file_path],
                    outputs=[redaction_output_summary_textbox, output_file, output_file_list_state, latest_file_completed_text, log_files_output, log_files_output_list_state, actual_time_taken_number, textract_metadata_textbox, pdf_doc_state, all_image_annotations_state, current_loop_page_number, page_break_return, all_line_level_ocr_results_df_base, all_decision_process_table_state, comprehend_query_number, output_review_files, annotate_max_pages, annotate_max_pages_bottom, prepared_pdf_state, images_pdf_state, review_file_state, page_sizes, duplication_file_path_outputs_list_state, in_duplicate_pages, latest_review_file_path, textract_query_number, latest_ocr_file_path], api_name="redact_doc").\
                    success(fn=update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, page_min, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs=[annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state])

    # If the app has completed a batch of pages, it will rerun the redaction process until the end of all pages in the document
    current_loop_page_number.change(fn = choose_and_run_redactor, inputs=[in_doc_files, prepared_pdf_state, images_pdf_state, in_redact_language, in_redact_entities, in_redact_comprehend_entities, text_extract_method_radio, in_allow_list_state, in_deny_list_state, in_fully_redacted_list_state, latest_file_completed_text, redaction_output_summary_textbox, output_file_list_state, log_files_output_list_state, second_loop_state, page_min, page_max, actual_time_taken_number, handwrite_signature_checkbox, textract_metadata_textbox, all_image_annotations_state, all_line_level_ocr_results_df_base, all_decision_process_table_state, pdf_doc_state, current_loop_page_number, page_break_return, pii_identification_method_drop, comprehend_query_number, max_fuzzy_spelling_mistakes_num, match_fuzzy_whole_phrase_bool, aws_access_key_textbox, aws_secret_key_textbox, annotate_max_pages, review_file_state, output_folder_textbox, document_cropboxes, page_sizes, textract_output_found_checkbox, only_extract_text_radio, duplication_file_path_outputs_list_state, latest_review_file_path, input_folder_textbox, textract_query_number, latest_ocr_file_path],
                    outputs=[redaction_output_summary_textbox, output_file, output_file_list_state, latest_file_completed_text, log_files_output, log_files_output_list_state, actual_time_taken_number, textract_metadata_textbox, pdf_doc_state, all_image_annotations_state, current_loop_page_number, page_break_return, all_line_level_ocr_results_df_base, all_decision_process_table_state, comprehend_query_number, output_review_files, annotate_max_pages, annotate_max_pages_bottom, prepared_pdf_state, images_pdf_state, review_file_state, page_sizes, duplication_file_path_outputs_list_state, in_duplicate_pages, latest_review_file_path, textract_query_number, latest_ocr_file_path]).\
                    success(fn=update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, page_min, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs=[annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state])
        
    # If a file has been completed, the function will continue onto the next document
    latest_file_completed_text.change(fn = choose_and_run_redactor, inputs=[in_doc_files, prepared_pdf_state, images_pdf_state, in_redact_language, in_redact_entities, in_redact_comprehend_entities, text_extract_method_radio, in_allow_list_state, in_deny_list_state, in_fully_redacted_list_state, latest_file_completed_text, redaction_output_summary_textbox, output_file_list_state, log_files_output_list_state, second_loop_state, page_min, page_max, actual_time_taken_number, handwrite_signature_checkbox, textract_metadata_textbox, all_image_annotations_state, all_line_level_ocr_results_df_base, all_decision_process_table_state, pdf_doc_state, current_loop_page_number, page_break_return, pii_identification_method_drop, comprehend_query_number, max_fuzzy_spelling_mistakes_num, match_fuzzy_whole_phrase_bool, aws_access_key_textbox, aws_secret_key_textbox, annotate_max_pages, review_file_state, output_folder_textbox, document_cropboxes, page_sizes, textract_output_found_checkbox, only_extract_text_radio, duplication_file_path_outputs_list_state, latest_review_file_path, input_folder_textbox, textract_query_number, latest_ocr_file_path],
                    outputs=[redaction_output_summary_textbox, output_file, output_file_list_state, latest_file_completed_text, log_files_output, log_files_output_list_state, actual_time_taken_number, textract_metadata_textbox, pdf_doc_state, all_image_annotations_state, current_loop_page_number, page_break_return, all_line_level_ocr_results_df_base, all_decision_process_table_state, comprehend_query_number, output_review_files, annotate_max_pages, annotate_max_pages_bottom, prepared_pdf_state, images_pdf_state, review_file_state, page_sizes, duplication_file_path_outputs_list_state, in_duplicate_pages, latest_review_file_path, textract_query_number, latest_ocr_file_path]).\
                    success(fn=update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, page_min, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs=[annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state]).\
                    success(fn=check_for_existing_textract_file, inputs=[doc_file_name_no_extension_textbox, output_folder_textbox], outputs=[textract_output_found_checkbox]).\
                    success(fn=reveal_feedback_buttons, outputs=[pdf_feedback_radio, pdf_further_details_text, pdf_submit_feedback_btn, pdf_feedback_title])
    
    # If the line level ocr results are changed by load in by user or by a new redaction task, replace the ocr results displayed in the table    
    all_line_level_ocr_results_df_base.change(reset_ocr_base_dataframe, inputs=[all_line_level_ocr_results_df_base], outputs=[all_line_level_ocr_results_df])

    # Send whole document to Textract for text extraction
    send_document_to_textract_api_btn.click(analyse_document_with_textract_api, inputs=[prepared_pdf_state, s3_bulk_textract_input_subfolder, s3_bulk_textract_output_subfolder, textract_job_detail_df, s3_bulk_textract_default_bucket, output_folder_textbox, handwrite_signature_checkbox, successful_textract_api_call_number], outputs=[job_output_textbox, job_id_textbox, job_type_dropdown, successful_textract_api_call_number, is_a_textract_api_call])

    check_state_of_textract_api_call_btn.click(check_for_provided_job_id, inputs=[job_id_textbox]).\
        success(poll_bulk_textract_analysis_progress_and_download, inputs=[job_id_textbox, job_type_dropdown, s3_bulk_textract_output_subfolder, doc_file_name_no_extension_textbox, textract_job_detail_df, s3_bulk_textract_default_bucket, output_folder_textbox, s3_bulk_textract_logs_subfolder, local_bulk_textract_logs_subfolder], outputs = [textract_job_output_file, job_current_status, textract_job_detail_df]).\
    success(fn=check_for_existing_textract_file, inputs=[doc_file_name_no_extension_textbox, output_folder_textbox], outputs=[textract_output_found_checkbox])

    textract_job_detail_df.select(df_select_callback_textract_api, inputs=[textract_output_found_checkbox], outputs=[job_id_textbox, job_type_dropdown, selected_job_id_row])
    
    ###
    # REVIEW PDF REDACTIONS
    ###

    # Upload previous files for modifying redactions
    upload_previous_review_file_btn.click(fn=reset_review_vars, inputs=None, outputs=[recogniser_entity_dataframe, recogniser_entity_dataframe_base]).\
        success(fn=get_input_file_names, inputs=[output_review_files], outputs=[doc_file_name_no_extension_textbox, doc_file_name_with_extension_textbox, doc_full_file_name_textbox, doc_file_name_textbox_list, total_pdf_page_count]).\
        success(fn = prepare_image_or_pdf, inputs=[output_review_files, text_extract_method_radio, latest_file_completed_text, redaction_output_summary_textbox, second_loop_state, annotate_max_pages, all_image_annotations_state, prepare_for_review_bool, in_fully_redacted_list_state, output_folder_textbox, input_folder_textbox, prepare_images_bool_false], outputs=[redaction_output_summary_textbox, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state, all_image_annotations_state, review_file_state, document_cropboxes, page_sizes, textract_output_found_checkbox, all_img_details_state, all_line_level_ocr_results_df_base], api_name="prepare_doc").\
        success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state])

    # Page number controls
    annotate_current_page.change(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_previous_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
        success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state]).\
        success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_state, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, output_review_files, log_files_output, review_file_state])
    
    annotation_last_page_button.click(fn=decrease_page, inputs=[annotate_current_page], outputs=[annotate_current_page, annotate_current_page_bottom])
    annotation_next_page_button.click(fn=increase_page, inputs=[annotate_current_page, all_image_annotations_state], outputs=[annotate_current_page, annotate_current_page_bottom])        

    annotation_last_page_button_bottom.click(fn=decrease_page, inputs=[annotate_current_page], outputs=[annotate_current_page, annotate_current_page_bottom])    
    annotation_next_page_button_bottom.click(fn=increase_page, inputs=[annotate_current_page, all_image_annotations_state], outputs=[annotate_current_page, annotate_current_page_bottom])

    annotate_current_page_bottom.submit(update_other_annotator_number_from_current, inputs=[annotate_current_page_bottom], outputs=[annotate_current_page])

    # Apply page redactions
    annotation_button_apply.click(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_state, output_folder_textbox, save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, output_review_files, log_files_output, review_file_state], scroll_to_output=True)
    
    # Review table controls
    recogniser_entity_dropdown.select(update_entities_df_recogniser_entities, inputs=[recogniser_entity_dropdown, recogniser_entity_dataframe_base, page_entity_dropdown, text_entity_dropdown], outputs=[recogniser_entity_dataframe, text_entity_dropdown, page_entity_dropdown])
    page_entity_dropdown.select(update_entities_df_page, inputs=[page_entity_dropdown, recogniser_entity_dataframe_base, recogniser_entity_dropdown, text_entity_dropdown], outputs=[recogniser_entity_dataframe, recogniser_entity_dropdown, text_entity_dropdown])
    text_entity_dropdown.select(update_entities_df_text, inputs=[text_entity_dropdown, recogniser_entity_dataframe_base, recogniser_entity_dropdown, page_entity_dropdown], outputs=[recogniser_entity_dataframe, recogniser_entity_dropdown, page_entity_dropdown])

    recogniser_entity_dataframe.select(df_select_callback, inputs=[recogniser_entity_dataframe], outputs=[annotate_current_page, selected_entity_dataframe_row])#.\
        #success(update_selected_review_df_row_colour, inputs=[selected_entity_dataframe_row, review_file_state], outputs=[review_file_state]).\
        #success(update_annotator_page_from_review_df, inputs=[review_file_state, images_pdf_state, page_sizes, annotate_current_page, annotate_previous_page, all_image_annotations_state, annotator], outputs=[annotator, all_image_annotations_state])
    
    
    reset_dropdowns_btn.click(reset_dropdowns, inputs=[recogniser_entity_dataframe_base], outputs=[recogniser_entity_dropdown, text_entity_dropdown, page_entity_dropdown]).\
        success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state])
    
    # Exclude current selection from annotator and outputs
    # Exclude only row
    exclude_selected_row_btn.click(exclude_selected_items_from_redaction, inputs=[review_file_state, selected_entity_dataframe_row, images_pdf_state, page_sizes, all_image_annotations_state, recogniser_entity_dataframe_base], outputs=[review_file_state, all_image_annotations_state, recogniser_entity_dataframe_base, backup_review_state, backup_image_annotations_state, backup_recogniser_entity_dataframe_base]).\
        success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state]).\
        success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_state, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, output_review_files, log_files_output, review_file_state]).\
        success(update_all_entity_df_dropdowns, inputs=[recogniser_entity_dataframe_base, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown], outputs=[recogniser_entity_dropdown, text_entity_dropdown, page_entity_dropdown])
    
    # Exclude everything visible in table
    exclude_selected_btn.click(exclude_selected_items_from_redaction, inputs=[review_file_state, recogniser_entity_dataframe, images_pdf_state, page_sizes, all_image_annotations_state, recogniser_entity_dataframe_base], outputs=[review_file_state, all_image_annotations_state, recogniser_entity_dataframe_base, backup_review_state, backup_image_annotations_state, backup_recogniser_entity_dataframe_base]).\
        success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state]).\
        success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_state, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, output_review_files, log_files_output, review_file_state]).\
        success(update_all_entity_df_dropdowns, inputs=[recogniser_entity_dataframe_base, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown], outputs=[recogniser_entity_dropdown, text_entity_dropdown, page_entity_dropdown])

    undo_last_removal_btn.click(undo_last_removal, inputs=[backup_review_state, backup_image_annotations_state, backup_recogniser_entity_dataframe_base], outputs=[review_file_state, all_image_annotations_state, recogniser_entity_dataframe_base]).\
        success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state]).\
        success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_state, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, output_review_files, log_files_output, review_file_state])
    
    update_current_page_redactions_btn.click(update_all_page_annotation_object_based_on_previous_page, inputs = [annotator, annotate_current_page, annotate_current_page, all_image_annotations_state, page_sizes], outputs = [all_image_annotations_state, annotate_previous_page, annotate_current_page_bottom]).\
        success(update_annotator_object_and_filter_df, inputs=[all_image_annotations_state, annotate_current_page, recogniser_entity_dropdown, page_entity_dropdown, text_entity_dropdown, recogniser_entity_dataframe_base, annotator_zoom_number, review_file_state, page_sizes, doc_full_file_name_textbox, input_folder_textbox], outputs = [annotator, annotate_current_page, annotate_current_page_bottom, annotate_previous_page, recogniser_entity_dropdown, recogniser_entity_dataframe, recogniser_entity_dataframe_base, text_entity_dropdown, page_entity_dropdown, page_sizes, all_image_annotations_state]).\
        success(apply_redactions_to_review_df_and_files, inputs=[annotator, doc_full_file_name_textbox, pdf_doc_state, all_image_annotations_state, annotate_current_page, review_file_state, output_folder_textbox, do_not_save_pdf_state, page_sizes], outputs=[pdf_doc_state, all_image_annotations_state, output_review_files, log_files_output, review_file_state])
    
    # Review OCR text buttom
    all_line_level_ocr_results_df.select(df_select_callback_ocr, inputs=[all_line_level_ocr_results_df], outputs=[annotate_current_page, selected_entity_dataframe_row], scroll_to_output=True)
    reset_all_ocr_results_btn.click(reset_ocr_base_dataframe, inputs=[all_line_level_ocr_results_df_base], outputs=[all_line_level_ocr_results_df])
    
    # Convert review file to xfdf Adobe format
    convert_review_file_to_adobe_btn.click(fn=get_input_file_names, inputs=[output_review_files], outputs=[doc_file_name_no_extension_textbox, doc_file_name_with_extension_textbox, doc_full_file_name_textbox, doc_file_name_textbox_list, total_pdf_page_count]).\
        success(fn = prepare_image_or_pdf, inputs=[output_review_files, text_extract_method_radio, latest_file_completed_text, redaction_output_summary_textbox, second_loop_state, annotate_max_pages, all_image_annotations_state, prepare_for_review_bool, in_fully_redacted_list_state, output_folder_textbox, input_folder_textbox, prepare_images_bool_false], outputs=[redaction_output_summary_textbox, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state, all_image_annotations_state, review_file_state, document_cropboxes, page_sizes, textract_output_found_checkbox, all_img_details_state, all_line_level_ocr_results_df_placeholder]).\
        success(convert_df_to_xfdf, inputs=[output_review_files, pdf_doc_state, images_pdf_state, output_folder_textbox, document_cropboxes, page_sizes], outputs=[adobe_review_files_out])
    
    # Convert xfdf Adobe file back to review_file.csv
    convert_adobe_to_review_file_btn.click(fn=get_input_file_names, inputs=[adobe_review_files_out], outputs=[doc_file_name_no_extension_textbox, doc_file_name_with_extension_textbox, doc_full_file_name_textbox, doc_file_name_textbox_list, total_pdf_page_count]).\
        success(fn = prepare_image_or_pdf, inputs=[adobe_review_files_out, text_extract_method_radio, latest_file_completed_text, redaction_output_summary_textbox, second_loop_state, annotate_max_pages, all_image_annotations_state, prepare_for_review_bool, in_fully_redacted_list_state, output_folder_textbox, input_folder_textbox, prepare_images_bool_false], outputs=[redaction_output_summary_textbox, prepared_pdf_state, images_pdf_state, annotate_max_pages, annotate_max_pages_bottom, pdf_doc_state, all_image_annotations_state, review_file_state, document_cropboxes, page_sizes, textract_output_found_checkbox, all_img_details_state, all_line_level_ocr_results_df_placeholder]).\
        success(fn=convert_xfdf_to_dataframe, inputs=[adobe_review_files_out, pdf_doc_state, images_pdf_state, output_folder_textbox], outputs=[output_review_files], scroll_to_output=True)
    
    ###
    # TABULAR DATA REDACTION
    ###
    in_data_files.upload(fn=put_columns_in_df, inputs=[in_data_files], outputs=[in_colnames, in_excel_sheets]).\
                  success(fn=get_input_file_names, inputs=[in_data_files], outputs=[data_file_name_no_extension_textbox, data_file_name_with_extension_textbox, data_full_file_name_textbox, data_file_name_textbox_list, total_pdf_page_count])

    tabular_data_redact_btn.click(fn=anonymise_data_files, inputs=[in_data_files, in_text, anon_strat, in_colnames, in_redact_language, in_redact_entities, in_allow_list_state, text_tabular_files_done, text_output_summary, text_output_file_list_state, log_files_output_list_state, in_excel_sheets, first_loop_state, output_folder_textbox, in_deny_list_state, max_fuzzy_spelling_mistakes_num, pii_identification_method_drop_tabular, in_redact_comprehend_entities, comprehend_query_number, aws_access_key_textbox, aws_secret_key_textbox], outputs=[text_output_summary, text_output_file, text_output_file_list_state, text_tabular_files_done, log_files_output, log_files_output_list_state], api_name="redact_data")

    # If the output file count text box changes, keep going with redacting each data file until done
    text_tabular_files_done.change(fn=anonymise_data_files, inputs=[in_data_files, in_text, anon_strat, in_colnames, in_redact_language, in_redact_entities, in_allow_list_state, text_tabular_files_done, text_output_summary, text_output_file_list_state, log_files_output_list_state, in_excel_sheets, second_loop_state, output_folder_textbox, in_deny_list_state, max_fuzzy_spelling_mistakes_num, pii_identification_method_drop_tabular, in_redact_comprehend_entities, comprehend_query_number, aws_access_key_textbox, aws_secret_key_textbox], outputs=[text_output_summary, text_output_file, text_output_file_list_state, text_tabular_files_done, log_files_output, log_files_output_list_state]).\
    success(fn = reveal_feedback_buttons, outputs=[data_feedback_radio, data_further_details_text, data_submit_feedback_btn, data_feedback_title])

    ###
    # IDENTIFY DUPLICATE PAGES
    ###
    find_duplicate_pages_btn.click(fn=identify_similar_pages, inputs=[in_duplicate_pages, duplicate_threshold_value, output_folder_textbox], outputs=[duplicate_pages_df, duplicate_pages_out])

    ###
    # SETTINGS PAGE INPUT / OUTPUT
    ###
    # If a custom allow/deny/duplicate page list is uploaded
    in_allow_list.change(fn=custom_regex_load, inputs=[in_allow_list], outputs=[in_allow_list_text, in_allow_list_state])
    in_deny_list.change(fn=custom_regex_load, inputs=[in_deny_list, in_deny_list_text_in], outputs=[in_deny_list_text, in_deny_list_state])
    in_fully_redacted_list.change(fn=custom_regex_load, inputs=[in_fully_redacted_list, in_fully_redacted_text_in], outputs=[in_fully_redacted_list_text, in_fully_redacted_list_state])

    # The following allows for more reliable updates of the data in the custom list dataframes
    in_allow_list_state.input(update_dataframe, inputs=[in_allow_list_state], outputs=[in_allow_list_state])
    in_deny_list_state.input(update_dataframe, inputs=[in_deny_list_state], outputs=[in_deny_list_state])
    in_fully_redacted_list_state.input(update_dataframe, inputs=[in_fully_redacted_list_state], outputs=[in_fully_redacted_list_state])

    # Merge multiple review csv files together
    merge_multiple_review_files_btn.click(fn=merge_csv_files, inputs=multiple_review_files_in_out, outputs=multiple_review_files_in_out)

    #
    all_output_files_btn.click(fn=load_all_output_files, inputs=output_folder_textbox, outputs=all_output_files)
    
    ###
    # APP LOAD AND LOGGING
    ###

    # Get connection details on app load

    if SHOW_BULK_TEXTRACT_CALL_OPTIONS == "True":
        app.load(get_connection_params, inputs=[output_folder_textbox, input_folder_textbox, session_output_folder_textbox, s3_bulk_textract_input_subfolder, s3_bulk_textract_output_subfolder, s3_bulk_textract_logs_subfolder, local_bulk_textract_logs_subfolder], outputs=[session_hash_state, output_folder_textbox, session_hash_textbox, input_folder_textbox, s3_bulk_textract_input_subfolder, s3_bulk_textract_output_subfolder, s3_bulk_textract_logs_subfolder, local_bulk_textract_logs_subfolder]).\
        success(load_in_textract_job_details, inputs=[load_s3_bulk_textract_logs_bool, s3_bulk_textract_logs_subfolder, local_bulk_textract_logs_subfolder], outputs=[textract_job_detail_df])
    else:
        app.load(get_connection_params, inputs=[output_folder_textbox, input_folder_textbox, session_output_folder_textbox, s3_bulk_textract_input_subfolder, s3_bulk_textract_output_subfolder, s3_bulk_textract_logs_subfolder, local_bulk_textract_logs_subfolder], outputs=[session_hash_state, output_folder_textbox, session_hash_textbox, input_folder_textbox, s3_bulk_textract_input_subfolder, s3_bulk_textract_output_subfolder, s3_bulk_textract_logs_subfolder, local_bulk_textract_logs_subfolder]) 
     

    # If relevant environment variable is set, load in the Textract job details

    # If relevant environment variable is set, load in the default allow list file from S3 or locally. Even when setting S3 path, need to local path to give a download location
    if GET_DEFAULT_ALLOW_LIST == "True" and (ALLOW_LIST_PATH or S3_ALLOW_LIST_PATH):
        if not os.path.exists(ALLOW_LIST_PATH) and S3_ALLOW_LIST_PATH and RUN_AWS_FUNCTIONS == "1":
            print("Downloading allow list from S3")
            app.load(download_file_from_s3, inputs=[s3_default_bucket, s3_default_allow_list_file, default_allow_list_output_folder_location]).\
            success(load_in_default_allow_list, inputs = [default_allow_list_output_folder_location], outputs=[in_allow_list])
            print("Successfully loaded allow list from S3")
        elif os.path.exists(ALLOW_LIST_PATH):
            print("Loading allow list from default allow list output path location:", ALLOW_LIST_PATH)
            app.load(load_in_default_allow_list, inputs = [default_allow_list_output_folder_location], outputs=[in_allow_list])
        else: print("Could not load in default allow list")

    # If relevant environment variable is set, load in the default cost code file from S3 or locally
    if GET_COST_CODES == "True" and (COST_CODES_PATH or S3_COST_CODES_PATH):
        if not os.path.exists(COST_CODES_PATH) and S3_COST_CODES_PATH and RUN_AWS_FUNCTIONS == "1":
            print("Downloading cost codes from S3")
            app.load(download_file_from_s3, inputs=[s3_default_bucket, s3_default_cost_codes_file, default_cost_codes_output_folder_location]).\
            success(load_in_default_cost_codes, inputs = [default_cost_codes_output_folder_location, default_cost_code_textbox], outputs=[cost_code_dataframe, cost_code_dataframe_base, cost_code_choice_drop])
            print("Successfully loaded cost codes from S3")
        elif os.path.exists(COST_CODES_PATH):
            print("Loading cost codes from default cost codes path location:", COST_CODES_PATH)
            app.load(load_in_default_cost_codes, inputs = [default_cost_codes_output_folder_location, default_cost_code_textbox], outputs=[cost_code_dataframe, cost_code_dataframe_base, cost_code_choice_drop])
        else: print("Could not load in cost code data")

    ###
    # LOGGING
    ###

    # Log usernames and times of access to file (to know who is using the app when running on AWS)
    access_callback = CSVLogger_custom(dataset_file_name=log_file_name)
    access_callback.setup([session_hash_textbox, host_name_textbox], ACCESS_LOGS_FOLDER)
    
    session_hash_textbox.change(lambda *args: access_callback.flag(list(args)), [session_hash_textbox, host_name_textbox], None, preprocess=False).\
    success(fn = upload_file_to_s3, inputs=[access_logs_state, access_s3_logs_loc_state], outputs=[s3_logs_output_textbox])

    # User submitted feedback for pdf redactions
    pdf_callback = CSVLogger_custom(dataset_file_name=log_file_name)
    pdf_callback.setup([pdf_feedback_radio, pdf_further_details_text, doc_file_name_no_extension_textbox], FEEDBACK_LOGS_FOLDER)
    pdf_submit_feedback_btn.click(lambda *args: pdf_callback.flag(list(args)), [pdf_feedback_radio, pdf_further_details_text, doc_file_name_no_extension_textbox], None, preprocess=False).\
    success(fn = upload_file_to_s3, inputs=[feedback_logs_state, feedback_s3_logs_loc_state], outputs=[pdf_further_details_text])

    # User submitted feedback for data redactions
    data_callback = CSVLogger_custom(dataset_file_name=log_file_name)
    data_callback.setup([data_feedback_radio, data_further_details_text, data_full_file_name_textbox], FEEDBACK_LOGS_FOLDER)
    data_submit_feedback_btn.click(lambda *args: data_callback.flag(list(args)), [data_feedback_radio, data_further_details_text, data_full_file_name_textbox], None, preprocess=False).\
    success(fn = upload_file_to_s3, inputs=[feedback_logs_state, feedback_s3_logs_loc_state], outputs=[data_further_details_text])

    # Log processing time/token usage when making a query
    usage_callback = CSVLogger_custom(dataset_file_name=log_file_name)    

    if DISPLAY_FILE_NAMES_IN_LOGS == 'True':
        usage_callback.setup([session_hash_textbox, doc_file_name_no_extension_textbox, data_full_file_name_textbox, total_pdf_page_count, actual_time_taken_number, textract_query_number, pii_identification_method_drop, comprehend_query_number, cost_code_choice_drop, handwrite_signature_checkbox, host_name_textbox], USAGE_LOGS_FOLDER)

        latest_file_completed_text.change(lambda *args: usage_callback.flag(list(args)), [session_hash_textbox, doc_file_name_no_extension_textbox, data_full_file_name_textbox, total_pdf_page_count, actual_time_taken_number, textract_query_number, pii_identification_method_drop, comprehend_query_number, cost_code_choice_drop, handwrite_signature_checkbox, host_name_textbox], None, preprocess=False).\
        success(fn = upload_file_to_s3, inputs=[usage_logs_state, usage_s3_logs_loc_state], outputs=[s3_logs_output_textbox])

        successful_textract_api_call_number.change(lambda *args: usage_callback.flag(list(args)), [session_hash_textbox, doc_file_name_no_extension_textbox, data_full_file_name_textbox, total_pdf_page_count, actual_time_taken_number, textract_query_number, pii_identification_method_drop, comprehend_query_number, cost_code_choice_drop, handwrite_signature_checkbox, host_name_textbox], None, preprocess=False).\
        success(fn = upload_file_to_s3, inputs=[usage_logs_state, usage_s3_logs_loc_state], outputs=[s3_logs_output_textbox])
    else:
        usage_callback.setup([session_hash_textbox, blank_doc_file_name_no_extension_textbox_for_logs, data_full_file_name_textbox, actual_time_taken_number, total_pdf_page_count, textract_query_number, pii_identification_method_drop, comprehend_query_number, cost_code_choice_drop, handwrite_signature_checkbox, host_name_textbox], USAGE_LOGS_FOLDER)

        latest_file_completed_text.change(lambda *args: usage_callback.flag(list(args)), [session_hash_textbox, blank_doc_file_name_no_extension_textbox_for_logs, data_full_file_name_textbox, actual_time_taken_number, total_pdf_page_count, textract_query_number, pii_identification_method_drop, comprehend_query_number, cost_code_choice_drop, handwrite_signature_checkbox, host_name_textbox], None, preprocess=False).\
        success(fn = upload_file_to_s3, inputs=[usage_logs_state, usage_s3_logs_loc_state], outputs=[s3_logs_output_textbox])

        successful_textract_api_call_number.change(lambda *args: usage_callback.flag(list(args)), [session_hash_textbox, blank_doc_file_name_no_extension_textbox_for_logs, data_full_file_name_textbox, actual_time_taken_number, total_pdf_page_count, textract_query_number, pii_identification_method_drop, comprehend_query_number, cost_code_choice_drop, handwrite_signature_checkbox, host_name_textbox], None, preprocess=False).\
        success(fn = upload_file_to_s3, inputs=[usage_logs_state, usage_s3_logs_loc_state], outputs=[s3_logs_output_textbox])

if __name__ == "__main__":
    if RUN_DIRECT_MODE == "0":
        
        if os.environ['COGNITO_AUTH'] == "1":
            app.queue(max_size=int(MAX_QUEUE_SIZE), default_concurrency_limit=int(DEFAULT_CONCURRENCY_LIMIT)).launch(show_error=True, auth=authenticate_user, max_file_size=MAX_FILE_SIZE, server_port=GRADIO_SERVER_PORT, root_path=ROOT_PATH)
        else:
            app.queue(max_size=int(MAX_QUEUE_SIZE), default_concurrency_limit=int(DEFAULT_CONCURRENCY_LIMIT)).launch(show_error=True, inbrowser=True, max_file_size=MAX_FILE_SIZE, server_port=GRADIO_SERVER_PORT, root_path=ROOT_PATH)
    
    else:
        from tools.cli_redact import main

        main(first_loop_state, latest_file_completed=0, redaction_output_summary_textbox="", output_file_list=None, 
         log_files_list=None, estimated_time=0, textract_metadata="", comprehend_query_num=0, 
         current_loop_page=0, page_break=False, pdf_doc_state = [], all_image_annotations = [], all_line_level_ocr_results_df = pd.DataFrame(), all_decision_process_table = pd.DataFrame(),chosen_comprehend_entities = chosen_comprehend_entities, chosen_redact_entities = chosen_redact_entities, handwrite_signature_checkbox = ["Extract handwriting", "Extract signatures"])

# AWS options - placeholder for possibility of storing data on s3 and retrieving it in app
# with gr.Tab(label="Advanced options"):
#     with gr.Accordion(label = "AWS data access", open = True):
#         aws_password_box = gr.Textbox(label="Password for AWS data access (ask the Data team if you don't have this)")
#         with gr.Row():
#             in_aws_file = gr.Dropdown(label="Choose file to load from AWS (only valid for API Gateway app)", choices=["None", "Lambeth borough plan"])
#             load_aws_data_button = gr.Button(value="Load data from AWS", variant="secondary")
            
#         aws_log_box = gr.Textbox(label="AWS data load status")

# ### Loading AWS data ###
# load_aws_data_button.click(fn=load_data_from_aws, inputs=[in_aws_file, aws_password_box], outputs=[in_doc_files, aws_log_box])