File size: 18,177 Bytes
e9c4101
9504619
e9c4101
66e145d
 
 
e9c4101
e3365ed
ed5f8c7
e9c4101
0ea8b9e
e9c4101
6319afc
6ea0852
 
e3365ed
6ea0852
 
 
 
 
 
 
 
 
 
 
 
0ea8b9e
e9c4101
 
 
e2aae24
7907ad4
 
 
 
0ea8b9e
7907ad4
0ea8b9e
e2aae24
a33b955
 
 
e2aae24
e9c4101
9504619
 
e3365ed
 
 
 
f0c28d7
 
e3365ed
9504619
e3365ed
9504619
e3365ed
 
 
 
 
 
e9c4101
66e145d
 
 
 
 
eea5c07
 
 
 
 
e9c4101
0ea8b9e
 
eea5c07
e9c4101
0ea8b9e
 
eea5c07
 
e9c4101
6319afc
e9c4101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6319afc
e9c4101
6ea0852
e9c4101
 
 
6ea0852
 
e9c4101
 
84c83c0
eea5c07
e9c4101
84c83c0
8652429
eea5c07
 
 
 
 
0ea8b9e
 
eea5c07
 
 
 
 
 
a33b955
e9c4101
eea5c07
 
e9c4101
eea5c07
 
8652429
6ea0852
84c83c0
 
 
 
 
 
 
 
 
 
8652429
84c83c0
8652429
 
 
0d3554e
 
6ea0852
 
 
 
eea5c07
8652429
 
 
 
 
 
 
 
 
 
84c83c0
 
8652429
 
84c83c0
 
8652429
 
 
 
 
 
 
 
 
 
 
0d3554e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84c83c0
 
e9c4101
6ea0852
8652429
6ea0852
 
0d3554e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84c83c0
 
 
 
 
 
 
8652429
6ea0852
84c83c0
e9c4101
 
6ea0852
 
 
 
eea5c07
 
e9c4101
eea5c07
 
 
 
 
 
 
84c83c0
 
eea5c07
66e145d
 
ed5f8c7
66e145d
0ea8b9e
66e145d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ea8b9e
66e145d
 
 
 
 
0ea8b9e
ed5f8c7
66e145d
0ea8b9e
66e145d
 
 
 
 
 
 
 
ed5f8c7
0ea8b9e
 
 
 
 
66e145d
0ea8b9e
 
66e145d
ed5f8c7
 
 
 
66e145d
0ea8b9e
66e145d
ed5f8c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ea8b9e
 
66e145d
0ea8b9e
 
 
 
 
 
 
 
 
66e145d
0ea8b9e
66e145d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import boto3
from typing import List
import io
import os
import json
from collections import defaultdict
import pikepdf
import time
import pandas as pd
from tools.custom_image_analyser_engine import OCRResult, CustomImageRecognizerResult
from tools.config import AWS_ACCESS_KEY, AWS_SECRET_KEY, AWS_REGION

def extract_textract_metadata(response:object):
    """Extracts metadata from an AWS Textract response."""

    #print("Document metadata:", response['DocumentMetadata'])

    request_id = response['ResponseMetadata']['RequestId']
    pages = response['DocumentMetadata']['Pages']
    #number_of_pages = response['DocumentMetadata']['NumberOfPages']

    return str({
        'RequestId': request_id,
        'Pages': pages
        #,
        #'NumberOfPages': number_of_pages
    })

def analyse_page_with_textract(pdf_page_bytes:object, page_no:int, client:str="", handwrite_signature_checkbox:List[str]=["Extract handwriting", "Redact all identified signatures"]):
    '''
    Analyse page with AWS Textract
    '''
    if client == "":
        try:               
            if AWS_ACCESS_KEY and AWS_SECRET_KEY:
                client = boto3.client('textract', 
                aws_access_key_id=AWS_ACCESS_KEY, 
                aws_secret_access_key=AWS_SECRET_KEY, region_name=AWS_REGION)
            else:
                client = boto3.client('textract', region_name=AWS_REGION)
        except:
            out_message = "Cannot connect to AWS Textract"
            print(out_message)
            raise Exception(out_message)
            return [], ""  # Return an empty list and an empty string
    
    # Redact signatures if specified
    if "Redact all identified signatures" in handwrite_signature_checkbox:
        #print("Analysing document with signature detection")
        try:
            response = client.analyze_document(Document={'Bytes': pdf_page_bytes}, FeatureTypes=["SIGNATURES"])
        except Exception as e:
            print("Textract call failed due to:", e, "trying again in 3 seconds.")
            time.sleep(3)
            response = client.analyze_document(Document={'Bytes': pdf_page_bytes}, FeatureTypes=["SIGNATURES"])
    else:
        #print("Analysing document without signature detection")
        # Call detect_document_text to extract plain text
        try:
            response = client.detect_document_text(Document={'Bytes': pdf_page_bytes})
        except Exception as e:
            print("Textract call failed due to:", e, "trying again in 5 seconds.")
            time.sleep(5)
            response = client.detect_document_text(Document={'Bytes': pdf_page_bytes})

     # Add the 'Page' attribute to each block
    if "Blocks" in response:
        for block in response["Blocks"]:
            block["Page"] = page_no  # Inject the page number into each block

    # Wrap the response with the page number in the desired format
    wrapped_response = {
        'page_no': page_no,
        'data': response
    }

    #print("response:", response)

    request_metadata = extract_textract_metadata(response)  # Metadata comes out as a string

    #print("request_metadata:", request_metadata)

    # Return a list containing the wrapped response and the metadata
    return wrapped_response, request_metadata  # Return as a list to match the desired structure

def convert_pike_pdf_page_to_bytes(pdf:object, page_num:int):
    # Create a new empty PDF
    new_pdf = pikepdf.Pdf.new()

    # Specify the page number you want to extract (0-based index)
    page_num = 0  # Example: first page

    # Extract the specific page and add it to the new PDF
    new_pdf.pages.append(pdf.pages[page_num])

    # Save the new PDF to a bytes buffer
    buffer = io.BytesIO()
    new_pdf.save(buffer)

    # Get the PDF bytes
    pdf_bytes = buffer.getvalue()

    # Now you can use the `pdf_bytes` to convert it to an image or further process
    buffer.close()

    #images = convert_from_bytes(pdf_bytes)
    #image = images[0]

    return pdf_bytes

def json_to_ocrresult(json_data:dict, page_width:float, page_height:float, page_no:int):
    '''
    Convert the json response from textract to the OCRResult format used elsewhere in the code. Looks for lines, words, and signatures. Handwriting and signatures are set aside especially for later in case the user wants to override the default behaviour and redact all handwriting/signatures.
    '''
    all_ocr_results = []
    signature_or_handwriting_recogniser_results = []
    signature_recogniser_results = []
    handwriting_recogniser_results = []
    signatures = []
    handwriting = []
    ocr_results_with_children = {}
    text_block={}

    i = 1

    # Assuming json_data is structured as a dictionary with a "pages" key
    #if "pages" in json_data:
    # Find the specific page data
    page_json_data = json_data #next((page for page in json_data["pages"] if page["page_no"] == page_no), None)

    #print("page_json_data:", page_json_data)

    if "Blocks" in page_json_data:
        # Access the data for the specific page
        text_blocks = page_json_data["Blocks"]  # Access the Blocks within the page data
    # This is a new page
    elif "page_no" in page_json_data:
        text_blocks = page_json_data["data"]["Blocks"]
    else: text_blocks = []

    is_signature = False
    is_handwriting = False

    for text_block in text_blocks:
    
        if (text_block['BlockType'] == 'LINE') | (text_block['BlockType'] == 'SIGNATURE'): # (text_block['BlockType'] == 'WORD') |

            # Extract text and bounding box for the line
            line_bbox = text_block["Geometry"]["BoundingBox"]
            line_left = int(line_bbox["Left"] * page_width)
            line_top = int(line_bbox["Top"] * page_height)
            line_right = int((line_bbox["Left"] + line_bbox["Width"]) * page_width)
            line_bottom = int((line_bbox["Top"] + line_bbox["Height"]) * page_height)

            width_abs = int(line_bbox["Width"] * page_width)
            height_abs = int(line_bbox["Height"] * page_height)

            if text_block['BlockType'] == 'LINE':
                
                # Extract text and bounding box for the line
                line_text = text_block.get('Text', '')
                words = []
                current_line_handwriting_results = []  # Track handwriting results for this line

                if 'Relationships' in text_block:
                    for relationship in text_block['Relationships']:
                        if relationship['Type'] == 'CHILD':
                            for child_id in relationship['Ids']:
                                child_block = next((block for block in text_blocks if block['Id'] == child_id), None)
                                if child_block and child_block['BlockType'] == 'WORD':
                                    word_text = child_block.get('Text', '')
                                    word_bbox = child_block["Geometry"]["BoundingBox"]
                                    confidence = child_block.get('Confidence','')
                                    word_left = int(word_bbox["Left"] * page_width)
                                    word_top = int(word_bbox["Top"] * page_height)
                                    word_right = int((word_bbox["Left"] + word_bbox["Width"]) * page_width)
                                    word_bottom = int((word_bbox["Top"] + word_bbox["Height"]) * page_height)

                                    # Extract BoundingBox details
                                    word_width = word_bbox["Width"]
                                    word_height = word_bbox["Height"]

                                    # Convert proportional coordinates to absolute coordinates
                                    word_width_abs = int(word_width * page_width)
                                    word_height_abs = int(word_height * page_height)
                                    
                                    words.append({
                                        'text': word_text,
                                        'bounding_box': (word_left, word_top, word_right, word_bottom)
                                    })
                                    # Check for handwriting
                                    text_type = child_block.get("TextType", '')

                                    if text_type == "HANDWRITING":
                                        is_handwriting = True
                                        entity_name = "HANDWRITING"
                                        word_end = len(word_text)

                                        recogniser_result = CustomImageRecognizerResult(
                                            entity_type=entity_name,
                                            text=word_text,
                                            score=confidence,
                                            start=0,
                                            end=word_end,
                                            left=word_left,
                                            top=word_top,
                                            width=word_width_abs,
                                            height=word_height_abs
                                        )

                                        # Add to handwriting collections immediately
                                        handwriting.append(recogniser_result)
                                        handwriting_recogniser_results.append(recogniser_result)
                                        signature_or_handwriting_recogniser_results.append(recogniser_result)
                                        current_line_handwriting_results.append(recogniser_result)

            # If handwriting or signature, add to bounding box               

            elif (text_block['BlockType'] == 'SIGNATURE'):
                line_text = "SIGNATURE"
                is_signature = True
                entity_name = "SIGNATURE"
                confidence = text_block.get('Confidence', 0)
                word_end = len(line_text)

                recogniser_result = CustomImageRecognizerResult(
                    entity_type=entity_name,
                    text=line_text,
                    score=confidence,
                    start=0,
                    end=word_end,
                    left=line_left,
                    top=line_top,
                    width=width_abs,
                    height=height_abs
                )

                # Add to signature collections immediately
                signatures.append(recogniser_result)
                signature_recogniser_results.append(recogniser_result)
                signature_or_handwriting_recogniser_results.append(recogniser_result)

                words = [{
                    'text': line_text,
                    'bounding_box': (line_left, line_top, line_right, line_bottom)
                }]

            ocr_results_with_children["text_line_" + str(i)] = {
                "line": i,
                'text': line_text,
                'bounding_box': (line_left, line_top, line_right, line_bottom),
                'words': words
            }         

            # Create OCRResult with absolute coordinates
            ocr_result = OCRResult(line_text, line_left, line_top, width_abs, height_abs)
            all_ocr_results.append(ocr_result)

            is_signature_or_handwriting = is_signature | is_handwriting

            # If it is signature or handwriting, will overwrite the default behaviour of the PII analyser
            if is_signature_or_handwriting:
                if recogniser_result not in signature_or_handwriting_recogniser_results: 
                    signature_or_handwriting_recogniser_results.append(recogniser_result)

                if is_signature:
                    if recogniser_result not in signature_recogniser_results:          
                        signature_recogniser_results.append(recogniser_result)

                if is_handwriting: 
                    if recogniser_result not in handwriting_recogniser_results: 
                        handwriting_recogniser_results.append(recogniser_result)

            i += 1

    return all_ocr_results, signature_or_handwriting_recogniser_results, signature_recogniser_results, handwriting_recogniser_results, ocr_results_with_children

def load_and_convert_textract_json(textract_json_file_path:str, log_files_output_paths:str, page_sizes_df:pd.DataFrame):
    """
    Loads Textract JSON from a file, detects if conversion is needed, and converts if necessary.
    """
    
    if not os.path.exists(textract_json_file_path):
        print("No existing Textract results file found.")
        return {}, True, log_files_output_paths  # Return empty dict and flag indicating missing file
    
    no_textract_file = False
    print("Found existing Textract json results file.")

    # Track log files
    if textract_json_file_path not in log_files_output_paths:
        log_files_output_paths.append(textract_json_file_path)

    try:
        with open(textract_json_file_path, 'r', encoding='utf-8') as json_file:
            textract_data = json.load(json_file)
    except json.JSONDecodeError:
        print("Error: Failed to parse Textract JSON file. Returning empty data.")
        return {}, True, log_files_output_paths  # Indicate failure

    # Check if conversion is needed
    if "pages" in textract_data:
        print("JSON already in the correct format for app. No changes needed.")
        return textract_data, False, log_files_output_paths  # No conversion required

    if "Blocks" in textract_data:
        print("Need to convert Textract JSON to app format.")
        try:
            
            textract_data = restructure_textract_output(textract_data, page_sizes_df)
            return textract_data, False, log_files_output_paths  # Successfully converted
        
        except Exception as e:
            print("Failed to convert JSON data to app format due to:", e)
            return {}, True, log_files_output_paths  # Conversion failed
    else:
        print("Invalid Textract JSON format: 'Blocks' missing.")
        print("textract data:", textract_data)
        return {}, True, log_files_output_paths  # Return empty data if JSON is not recognized

def restructure_textract_output(textract_output: dict, page_sizes_df:pd.DataFrame):
    """
    Reorganise Textract output from the bulk Textract analysis option on AWS 
    into a format that works in this redaction app, reducing size.
    """
    pages_dict = {}

    # Extract total pages from DocumentMetadata
    document_metadata = textract_output.get("DocumentMetadata", {})

    # For efficient lookup, set 'page' as index if it's not already
    if 'page' in page_sizes_df.columns:
        page_sizes_df = page_sizes_df.set_index('page')

    for block in textract_output.get("Blocks", []):
        page_no = block.get("Page", 1)  # Default to 1 if missing

        # --- Geometry Conversion Logic ---
        try:
            page_info = page_sizes_df.loc[page_no]
            cb_width = page_info['cropbox_width']
            cb_height = page_info['cropbox_height']
            mb_width = page_info['mediabox_width']
            mb_height = page_info['mediabox_height']
            cb_x_offset = page_info['cropbox_x_offset']
            cb_y_offset_top = page_info['cropbox_y_offset_from_top']

            # Check if conversion is needed (and avoid division by zero)
            needs_conversion = (
                abs(cb_width - mb_width) > 1e-6 or \
                abs(cb_height - mb_height) > 1e-6
            ) and mb_width > 1e-6 and mb_height > 1e-6 # Avoid division by zero

            if needs_conversion and 'Geometry' in block:
                geometry = block['Geometry'] # Work directly on the block's geometry

                # --- Convert BoundingBox ---
                if 'BoundingBox' in geometry:
                    bbox = geometry['BoundingBox']
                    old_left = bbox['Left']
                    old_top = bbox['Top']
                    old_width = bbox['Width']
                    old_height = bbox['Height']

                    # Calculate absolute coordinates within CropBox
                    abs_cb_x = old_left * cb_width
                    abs_cb_y = old_top * cb_height
                    abs_cb_width = old_width * cb_width
                    abs_cb_height = old_height * cb_height

                    # Calculate absolute coordinates relative to MediaBox top-left
                    abs_mb_x = cb_x_offset + abs_cb_x
                    abs_mb_y = cb_y_offset_top + abs_cb_y

                    # Convert back to normalized coordinates relative to MediaBox
                    bbox['Left'] = abs_mb_x / mb_width
                    bbox['Top'] = abs_mb_y / mb_height
                    bbox['Width'] = abs_cb_width / mb_width
                    bbox['Height'] = abs_cb_height / mb_height
        except KeyError:
            print(f"Warning: Page number {page_no} not found in page_sizes_df. Skipping coordinate conversion for this block.")
            # Decide how to handle missing page info: skip conversion, raise error, etc.
        except ZeroDivisionError:
             print(f"Warning: MediaBox width or height is zero for page {page_no}. Skipping coordinate conversion for this block.")

        # Initialise page structure if not already present
        if page_no not in pages_dict:
            pages_dict[page_no] = {"page_no": str(page_no), "data": {"Blocks": []}}

        # Keep only essential fields to reduce size
        filtered_block = {
            key: block[key] for key in ["BlockType", "Confidence", "Text", "Geometry", "Page", "Id", "Relationships"]
            if key in block
        }
        
        pages_dict[page_no]["data"]["Blocks"].append(filtered_block)

    # Convert pages dictionary to a sorted list
    structured_output = {
        "DocumentMetadata": document_metadata,  # Store metadata separately
        "pages": [pages_dict[page] for page in sorted(pages_dict.keys())]
    }

    return structured_output