Spaces:
Sleeping
Sleeping
File size: 34,837 Bytes
7810536 ff290e1 7810536 8c33828 7810536 8c33828 7810536 01c88c0 7810536 0ea8b9e 6319afc ff290e1 7810536 f0f9378 93ac94f 8c33828 93ac94f 8c33828 93ac94f 8c33828 93ac94f 8c33828 7810536 ff290e1 0ea8b9e ff290e1 01c88c0 ff290e1 8c33828 ff290e1 01c88c0 ff290e1 7810536 01c88c0 8652429 ff290e1 7810536 ff290e1 dacc782 ff290e1 dacc782 ff290e1 dacc782 0ea8b9e ff290e1 7810536 ff290e1 7810536 ff290e1 7810536 ff290e1 7810536 ff290e1 8c33828 ff290e1 7810536 ff290e1 7810536 ff290e1 7810536 ff290e1 7810536 ff290e1 7810536 ff290e1 7810536 ff290e1 7810536 ff290e1 7810536 ff290e1 7810536 ff290e1 7810536 ff290e1 bbf818d dacc782 ff290e1 0ea8b9e dacc782 ff290e1 dacc782 ff290e1 dacc782 7810536 ff290e1 01c88c0 ff290e1 01c88c0 ff290e1 01c88c0 ff290e1 01c88c0 ff290e1 01c88c0 ff290e1 01c88c0 93ac94f 8c33828 01c88c0 93ac94f 01c88c0 8c33828 01c88c0 bbf818d 01c88c0 bbf818d 01c88c0 ff290e1 dacc782 ff290e1 20d940b ff290e1 20d940b ff290e1 01c88c0 8652429 bbf818d ff290e1 7810536 ff290e1 7810536 ff290e1 7810536 ff290e1 7810536 ff290e1 7810536 ff290e1 01c88c0 ff290e1 7810536 ff290e1 7810536 ff290e1 01c88c0 ff290e1 01c88c0 ff290e1 01c88c0 ff290e1 20d940b ff290e1 01c88c0 ff290e1 01c88c0 ff290e1 7810536 ff290e1 7810536 ff290e1 bbf818d ff290e1 7810536 ff290e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 |
import re
import secrets
import base64
import time
import boto3
import botocore
import pandas as pd
from faker import Faker
from gradio import Progress
from typing import List, Dict, Any
from presidio_analyzer import AnalyzerEngine, BatchAnalyzerEngine, DictAnalyzerResult, RecognizerResult
from presidio_anonymizer import AnonymizerEngine, BatchAnonymizerEngine
from presidio_anonymizer.entities import OperatorConfig, ConflictResolutionStrategy
from tools.config import RUN_AWS_FUNCTIONS, AWS_ACCESS_KEY, AWS_SECRET_KEY, OUTPUT_FOLDER
from tools.helper_functions import get_file_name_without_type, read_file, detect_file_type
from tools.load_spacy_model_custom_recognisers import nlp_analyser, score_threshold, custom_word_list_recogniser, CustomWordFuzzyRecognizer, custom_entities
from tools.custom_image_analyser_engine import do_aws_comprehend_call
# Use custom version of analyze_dict to be able to track progress
from tools.presidio_analyzer_custom import analyze_dict
fake = Faker("en_UK")
def fake_first_name(x):
return fake.first_name()
def initial_clean(text):
#### Some of my cleaning functions
html_pattern_regex = r'<.*?>|&([a-z0-9]+|#[0-9]{1,6}|#x[0-9a-f]{1,6});|\xa0| '
html_start_pattern_end_dots_regex = r'<(.*?)\.\.'
non_ascii_pattern = r'[^\x00-\x7F]+'
multiple_spaces_regex = r'\s{2,}'
# Define a list of patterns and their replacements
patterns = [
(html_pattern_regex, ' '),
(html_start_pattern_end_dots_regex, ' '),
(non_ascii_pattern, ' '),
(multiple_spaces_regex, ' ')
]
# Apply each regex replacement
for pattern, replacement in patterns:
text = re.sub(pattern, replacement, text)
return text
def process_recognizer_result(result, recognizer_result, data_row, dictionary_key, df_dict, keys_to_keep):
output = []
if hasattr(result, 'value'):
text = result.value[data_row]
else:
text = ""
if isinstance(recognizer_result, list):
for sub_result in recognizer_result:
if isinstance(text, str):
found_text = text[sub_result.start:sub_result.end]
else:
found_text = ''
analysis_explanation = {key: sub_result.__dict__[key] for key in keys_to_keep}
analysis_explanation.update({
'data_row': str(data_row),
'column': list(df_dict.keys())[dictionary_key],
'entity': found_text
})
output.append(str(analysis_explanation))
return output
# Writing decision making process to file
def generate_decision_process_output(analyzer_results: List[DictAnalyzerResult], df_dict: Dict[str, List[Any]]) -> str:
"""
Generate a detailed output of the decision process for entity recognition.
This function takes the results from the analyzer and the original data dictionary,
and produces a string output detailing the decision process for each recognized entity.
It includes information such as entity type, position, confidence score, and the context
in which the entity was found.
Args:
analyzer_results (List[DictAnalyzerResult]): The results from the entity analyzer.
df_dict (Dict[str, List[Any]]): The original data in dictionary format.
Returns:
str: A string containing the detailed decision process output.
"""
decision_process_output = []
keys_to_keep = ['entity_type', 'start', 'end']
# Run through each column to analyse for PII
for i, result in enumerate(analyzer_results):
# If a single result
if isinstance(result, RecognizerResult):
decision_process_output.extend(process_recognizer_result(result, result, 0, i, df_dict, keys_to_keep))
# If a list of results
elif isinstance(result, list) or isinstance(result, DictAnalyzerResult):
for x, recognizer_result in enumerate(result.recognizer_results):
decision_process_output.extend(process_recognizer_result(result, recognizer_result, x, i, df_dict, keys_to_keep))
else:
try:
decision_process_output.extend(process_recognizer_result(result, result, 0, i, df_dict, keys_to_keep))
except Exception as e:
print(e)
decision_process_output_str = '\n'.join(decision_process_output)
return decision_process_output_str
def anon_consistent_names(df):
# ## Pick out common names and replace them with the same person value
df_dict = df.to_dict(orient="list")
analyzer = AnalyzerEngine()
batch_analyzer = BatchAnalyzerEngine(analyzer_engine=analyzer)
analyzer_results = batch_analyzer.analyze_dict(df_dict, language="en")
analyzer_results = list(analyzer_results)
# + tags=[]
text = analyzer_results[3].value
# + tags=[]
recognizer_result = str(analyzer_results[3].recognizer_results)
# + tags=[]
recognizer_result
# + tags=[]
data_str = recognizer_result # abbreviated for brevity
# Adjusting the parse_dict function to handle trailing ']'
# Splitting the main data string into individual list strings
list_strs = data_str[1:-1].split('], [')
def parse_dict(s):
s = s.strip('[]') # Removing any surrounding brackets
items = s.split(', ')
d = {}
for item in items:
key, value = item.split(': ')
if key == 'score':
d[key] = float(value)
elif key in ['start', 'end']:
d[key] = int(value)
else:
d[key] = value
return d
# Re-running the improved processing code
result = []
for lst_str in list_strs:
# Splitting each list string into individual dictionary strings
dict_strs = lst_str.split(', type: ')
dict_strs = [dict_strs[0]] + ['type: ' + s for s in dict_strs[1:]] # Prepending "type: " back to the split strings
# Parsing each dictionary string
dicts = [parse_dict(d) for d in dict_strs]
result.append(dicts)
#result
# + tags=[]
names = []
for idx, paragraph in enumerate(text):
paragraph_texts = []
for dictionary in result[idx]:
if dictionary['type'] == 'PERSON':
paragraph_texts.append(paragraph[dictionary['start']:dictionary['end']])
names.append(paragraph_texts)
# + tags=[]
# Flatten the list of lists and extract unique names
unique_names = list(set(name for sublist in names for name in sublist))
# + tags=[]
fake_names = pd.Series(unique_names).apply(fake_first_name)
# + tags=[]
mapping_df = pd.DataFrame(data={"Unique names":unique_names,
"Fake names": fake_names})
# + tags=[]
# Convert mapping dataframe to dictionary
# Convert mapping dataframe to dictionary, adding word boundaries for full-word match
name_map = {r'\b' + k + r'\b': v for k, v in zip(mapping_df['Unique names'], mapping_df['Fake names'])}
# + tags=[]
name_map
# + tags=[]
scrubbed_df_consistent_names = df.replace(name_map, regex = True)
# + tags=[]
scrubbed_df_consistent_names
return scrubbed_df_consistent_names
def anonymise_data_files(file_paths: List[str],
in_text: str,
anon_strat: str,
chosen_cols: List[str],
language: str,
chosen_redact_entities: List[str],
in_allow_list: List[str] = None,
latest_file_completed: int = 0,
out_message: list = [],
out_file_paths: list = [],
log_files_output_paths: list = [],
in_excel_sheets: list = [],
first_loop_state: bool = False,
output_folder: str = OUTPUT_FOLDER,
in_deny_list:list[str]=[],
max_fuzzy_spelling_mistakes_num:int=0,
pii_identification_method:str="Local",
chosen_redact_comprehend_entities:List[str]=[],
comprehend_query_number:int=0,
aws_access_key_textbox:str='',
aws_secret_key_textbox:str='',
progress: Progress = Progress(track_tqdm=True)):
"""
This function anonymises data files based on the provided parameters.
Parameters:
- file_paths (List[str]): A list of file paths to anonymise.
- in_text (str): The text to anonymise if file_paths is 'open_text'.
- anon_strat (str): The anonymisation strategy to use.
- chosen_cols (List[str]): A list of column names to anonymise.
- language (str): The language of the text to anonymise.
- chosen_redact_entities (List[str]): A list of entities to redact.
- in_allow_list (List[str], optional): A list of allowed values. Defaults to None.
- latest_file_completed (int, optional): The index of the last file completed. Defaults to 0.
- out_message (list, optional): A list to store output messages. Defaults to an empty list.
- out_file_paths (list, optional): A list to store output file paths. Defaults to an empty list.
- log_files_output_paths (list, optional): A list to store log file paths. Defaults to an empty list.
- in_excel_sheets (list, optional): A list of Excel sheet names. Defaults to an empty list.
- first_loop_state (bool, optional): Indicates if this is the first loop iteration. Defaults to False.
- output_folder (str, optional): The output folder path. Defaults to the global output_folder variable.
- in_deny_list (list[str], optional): A list of specific terms to redact.
- max_fuzzy_spelling_mistakes_num (int, optional): The maximum number of spelling mistakes allowed in a searched phrase for fuzzy matching. Can range from 0-9.
- pii_identification_method (str, optional): The method to redact personal information. Either 'Local' (spacy model), or 'AWS Comprehend' (AWS Comprehend API).
- chosen_redact_comprehend_entities (List[str]): A list of entity types to redact from files, chosen from the official list from AWS Comprehend service.
- comprehend_query_number (int, optional): A counter tracking the number of queries to AWS Comprehend.
- aws_access_key_textbox (str, optional): AWS access key for account with Textract and Comprehend permissions.
- aws_secret_key_textbox (str, optional): AWS secret key for account with Textract and Comprehend permissions.
- progress (Progress, optional): A Progress object to track progress. Defaults to a Progress object with track_tqdm=True.
"""
tic = time.perf_counter()
comprehend_client = ""
# If this is the first time around, set variables to 0/blank
if first_loop_state==True:
latest_file_completed = 0
out_message = []
out_file_paths = []
# Load file
# If out message or out_file_paths are blank, change to a list so it can be appended to
if isinstance(out_message, str):
out_message = [out_message]
#print("log_files_output_paths:",log_files_output_paths)
if isinstance(log_files_output_paths, str):
log_files_output_paths = []
if not out_file_paths:
out_file_paths = []
if in_allow_list:
in_allow_list_flat = in_allow_list #[item for sublist in in_allow_list for item in sublist]
else:
in_allow_list_flat = []
anon_df = pd.DataFrame()
# Try to connect to AWS services directly only if RUN_AWS_FUNCTIONS environmental variable is 1, otherwise an environment variable or direct textbox input is needed.
if pii_identification_method == "AWS Comprehend":
print("Trying to connect to AWS Comprehend service")
if aws_access_key_textbox and aws_secret_key_textbox:
print("Connecting to Comprehend using AWS access key and secret keys from textboxes.")
print("aws_access_key_textbox:", aws_access_key_textbox)
print("aws_secret_access_key:", aws_secret_key_textbox)
comprehend_client = boto3.client('comprehend',
aws_access_key_id=aws_access_key_textbox,
aws_secret_access_key=aws_secret_key_textbox)
elif RUN_AWS_FUNCTIONS == "1":
print("Connecting to Comprehend via existing SSO connection")
comprehend_client = boto3.client('comprehend')
elif AWS_ACCESS_KEY and AWS_SECRET_KEY:
print("Getting Comprehend credentials from environment variables")
comprehend_client = boto3.client('comprehend',
aws_access_key_id=AWS_ACCESS_KEY,
aws_secret_access_key=AWS_SECRET_KEY)
else:
comprehend_client = ""
out_message = "Cannot connect to AWS Comprehend service. Please provide access keys under Textract settings on the Redaction settings tab, or choose another PII identification method."
print(out_message)
# Check if files and text exist
if not file_paths:
if in_text:
file_paths=['open_text']
else:
out_message = "Please enter text or a file to redact."
return out_message, out_file_paths, out_file_paths, latest_file_completed, log_files_output_paths, log_files_output_paths
# If we have already redacted the last file, return the input out_message and file list to the relevant components
if latest_file_completed >= len(file_paths):
print("Last file reached") #, returning files:", str(latest_file_completed))
# Set to a very high number so as not to mess with subsequent file processing by the user
latest_file_completed = 99
final_out_message = '\n'.join(out_message)
return final_out_message, out_file_paths, out_file_paths, latest_file_completed, log_files_output_paths, log_files_output_paths
file_path_loop = [file_paths[int(latest_file_completed)]]
for anon_file in progress.tqdm(file_path_loop, desc="Anonymising files", unit = "file"):
if anon_file=='open_text':
anon_df = pd.DataFrame(data={'text':[in_text]})
chosen_cols=['text']
sheet_name = ""
file_type = ""
out_file_part = anon_file
out_file_paths, out_message, key_string, log_files_output_paths = anon_wrapper_func(anon_file, anon_df, chosen_cols, out_file_paths, out_file_part, out_message, sheet_name, anon_strat, language, chosen_redact_entities, in_allow_list, file_type, "", log_files_output_paths, in_deny_list, max_fuzzy_spelling_mistakes_num, pii_identification_method, chosen_redact_comprehend_entities, comprehend_query_number, comprehend_client, output_folder=OUTPUT_FOLDER)
else:
# If file is an xlsx, we are going to run through all the Excel sheets to anonymise them separately.
file_type = detect_file_type(anon_file)
print("File type is:", file_type)
out_file_part = get_file_name_without_type(anon_file.name)
if file_type == 'xlsx':
print("Running through all xlsx sheets")
#anon_xlsx = pd.ExcelFile(anon_file)
if not in_excel_sheets:
out_message.append("No Excel sheets selected. Please select at least one to anonymise.")
continue
anon_xlsx = pd.ExcelFile(anon_file)
# Create xlsx file:
anon_xlsx_export_file_name = output_folder + out_file_part + "_redacted.xlsx"
from openpyxl import Workbook
wb = Workbook()
wb.save(anon_xlsx_export_file_name)
# Iterate through the sheet names
for sheet_name in in_excel_sheets:
# Read each sheet into a DataFrame
if sheet_name not in anon_xlsx.sheet_names:
continue
anon_df = pd.read_excel(anon_file, sheet_name=sheet_name)
out_file_paths, out_message, key_string, log_files_output_paths = anon_wrapper_func(anon_file, anon_df, chosen_cols, out_file_paths, out_file_part, out_message, sheet_name, anon_strat, language, chosen_redact_entities, in_allow_list, file_type, "", log_files_output_paths, in_deny_list, max_fuzzy_spelling_mistakes_num, pii_identification_method, chosen_redact_comprehend_entities, comprehend_query_number, comprehend_client, output_folder=output_folder)
else:
sheet_name = ""
anon_df = read_file(anon_file)
out_file_part = get_file_name_without_type(anon_file.name)
out_file_paths, out_message, key_string, log_files_output_paths = anon_wrapper_func(anon_file, anon_df, chosen_cols, out_file_paths, out_file_part, out_message, sheet_name, anon_strat, language, chosen_redact_entities, in_allow_list, file_type, "", log_files_output_paths, in_deny_list, max_fuzzy_spelling_mistakes_num, pii_identification_method, chosen_redact_comprehend_entities, comprehend_query_number, comprehend_client, output_folder=output_folder)
# Increase latest file completed count unless we are at the last file
if latest_file_completed != len(file_paths):
print("Completed file number:", str(latest_file_completed))
latest_file_completed += 1
toc = time.perf_counter()
out_time = f"in {toc - tic:0.1f} seconds."
print(out_time)
if anon_strat == "encrypt":
out_message.append(". Your decryption key is " + key_string + ".")
out_message.append("Anonymisation of file '" + out_file_part + "' successfully completed in")
out_message_out = '\n'.join(out_message)
out_message_out = out_message_out + " " + out_time
out_message_out = out_message_out + "\n\nGo to to the Redaction settings tab to see redaction logs. Please give feedback on the results below to help improve this app."
return out_message_out, out_file_paths, out_file_paths, latest_file_completed, log_files_output_paths, log_files_output_paths
def anon_wrapper_func(
anon_file: str,
anon_df: pd.DataFrame,
chosen_cols: List[str],
out_file_paths: List[str],
out_file_part: str,
out_message: str,
excel_sheet_name: str,
anon_strat: str,
language: str,
chosen_redact_entities: List[str],
in_allow_list: List[str],
file_type: str,
anon_xlsx_export_file_name: str,
log_files_output_paths: List[str],
in_deny_list: List[str]=[],
max_fuzzy_spelling_mistakes_num:int=0,
pii_identification_method:str="Local",
chosen_redact_comprehend_entities:List[str]=[],
comprehend_query_number:int=0,
comprehend_client:botocore.client.BaseClient="",
output_folder: str = OUTPUT_FOLDER
):
"""
This function wraps the anonymisation process for a given dataframe. It filters the dataframe based on chosen columns, applies the specified anonymisation strategy using the anonymise_script function, and exports the anonymised data to a file.
Input Variables:
- anon_file: The path to the file containing the data to be anonymized.
- anon_df: The pandas DataFrame containing the data to be anonymized.
- chosen_cols: A list of column names to be anonymized.
- out_file_paths: A list of paths where the anonymized files will be saved.
- out_file_part: A part of the output file name.
- out_message: A message to be displayed during the anonymization process.
- excel_sheet_name: The name of the Excel sheet where the anonymized data will be exported.
- anon_strat: The anonymization strategy to be applied.
- language: The language of the data to be anonymized.
- chosen_redact_entities: A list of entities to be redacted.
- in_allow_list: A list of allowed values.
- file_type: The type of file to be exported.
- anon_xlsx_export_file_name: The name of the anonymized Excel file.
- log_files_output_paths: A list of paths where the log files will be saved.
- in_deny_list: List of specific terms to remove from the data.
- max_fuzzy_spelling_mistakes_num (int, optional): The maximum number of spelling mistakes allowed in a searched phrase for fuzzy matching. Can range from 0-9.
- pii_identification_method (str, optional): The method to redact personal information. Either 'Local' (spacy model), or 'AWS Comprehend' (AWS Comprehend API).
- chosen_redact_comprehend_entities (List[str]): A list of entity types to redact from files, chosen from the official list from AWS Comprehend service.
- comprehend_query_number (int, optional): A counter tracking the number of queries to AWS Comprehend.
- comprehend_client (optional): The client object from AWS containing a client connection to AWS Comprehend if that option is chosen on the first tab.
- output_folder: The folder where the anonymized files will be saved. Defaults to the 'output_folder' variable.
"""
def check_lists(list1, list2):
return any(string in list2 for string in list1)
def get_common_strings(list1, list2):
"""
Finds the common strings between two lists.
Args:
list1: The first list of strings.
list2: The second list of strings.
Returns:
A list containing the common strings.
"""
common_strings = []
for string in list1:
if string in list2:
common_strings.append(string)
return common_strings
if pii_identification_method == "AWS Comprehend" and comprehend_client == "":
raise("Connection to AWS Comprehend service not found, please check connection details.")
# Check for chosen col, skip file if not found
all_cols_original_order = list(anon_df.columns)
any_cols_found = check_lists(chosen_cols, all_cols_original_order)
if any_cols_found == False:
out_message = "No chosen columns found in dataframe: " + out_file_part
print(out_message)
else:
chosen_cols_in_anon_df = get_common_strings(chosen_cols, all_cols_original_order)
# Split dataframe to keep only selected columns
#print("Remaining columns to redact:", chosen_cols_in_anon_df)
anon_df_part = anon_df[chosen_cols_in_anon_df]
anon_df_remain = anon_df.drop(chosen_cols_in_anon_df, axis = 1)
# Anonymise the selected columns
anon_df_part_out, key_string, decision_process_output_str = anonymise_script(anon_df_part, anon_strat, language, chosen_redact_entities, in_allow_list, in_deny_list, max_fuzzy_spelling_mistakes_num, pii_identification_method, chosen_redact_comprehend_entities, comprehend_query_number, comprehend_client)
# Rejoin the dataframe together
anon_df_out = pd.concat([anon_df_part_out, anon_df_remain], axis = 1)
anon_df_out = anon_df_out[all_cols_original_order]
# Export file
# Rename anonymisation strategy for file path naming
if anon_strat == "replace with 'REDACTED'": anon_strat_txt = "redact_replace"
elif anon_strat == "replace with <ENTITY_NAME>": anon_strat_txt = "redact_entity_type"
elif anon_strat == "redact completely": anon_strat_txt = "redact_remove"
else: anon_strat_txt = anon_strat
# If the file is an xlsx, add a new sheet to the existing xlsx. Otherwise, write to csv
if file_type == 'xlsx':
anon_export_file_name = anon_xlsx_export_file_name
# Create a Pandas Excel writer using XlsxWriter as the engine.
with pd.ExcelWriter(anon_xlsx_export_file_name, engine='openpyxl', mode='a') as writer:
# Write each DataFrame to a different worksheet.
anon_df_out.to_excel(writer, sheet_name=excel_sheet_name, index=None)
decision_process_log_output_file = anon_xlsx_export_file_name + "_" + excel_sheet_name + "_decision_process_output.txt"
with open(decision_process_log_output_file, "w") as f:
f.write(decision_process_output_str)
else:
anon_export_file_name = output_folder + out_file_part + "_anon_" + anon_strat_txt + ".csv"
anon_df_out.to_csv(anon_export_file_name, index = None)
decision_process_log_output_file = anon_export_file_name + "_decision_process_output.txt"
with open(decision_process_log_output_file, "w") as f:
f.write(decision_process_output_str)
out_file_paths.append(anon_export_file_name)
log_files_output_paths.append(decision_process_log_output_file)
# As files are created in a loop, there is a risk of duplicate file names being output. Use set to keep uniques.
out_file_paths = list(set(out_file_paths))
# Print result text to output text box if just anonymising open text
if anon_file=='open_text':
out_message = [anon_df_out['text'][0]]
return out_file_paths, out_message, key_string, log_files_output_paths
def anonymise_script(df:pd.DataFrame, anon_strat:str, language:str, chosen_redact_entities:List[str], in_allow_list:List[str]=[], in_deny_list:List[str]=[], max_fuzzy_spelling_mistakes_num:int=0, pii_identification_method:str="Local", chosen_redact_comprehend_entities:List[str]=[], comprehend_query_number:int=0, comprehend_client:botocore.client.BaseClient="", custom_entities=custom_entities, progress=Progress(track_tqdm=False)):
'''
Conduct anonymisation of a dataframe using Presidio and/or AWS Comprehend if chosen.
'''
print("Identifying personal information")
analyse_tic = time.perf_counter()
# Initialize analyzer_results as an empty dictionary to store results by column
results_by_column = {}
key_string = ""
# DataFrame to dict
df_dict = df.to_dict(orient="list")
if in_allow_list:
in_allow_list_flat = in_allow_list #[item for sublist in in_allow_list for item in sublist]
else:
in_allow_list_flat = []
if isinstance(in_deny_list, pd.DataFrame):
if not in_deny_list.empty:
in_deny_list = in_deny_list.iloc[:, 0].tolist()
else:
# Handle the case where the DataFrame is empty
in_deny_list = [] # or some default value
# Sort the strings in order from the longest string to the shortest
in_deny_list = sorted(in_deny_list, key=len, reverse=True)
if in_deny_list:
nlp_analyser.registry.remove_recognizer("CUSTOM")
new_custom_recogniser = custom_word_list_recogniser(in_deny_list)
nlp_analyser.registry.add_recognizer(new_custom_recogniser)
nlp_analyser.registry.remove_recognizer("CustomWordFuzzyRecognizer")
new_custom_fuzzy_recogniser = CustomWordFuzzyRecognizer(supported_entities=["CUSTOM_FUZZY"], custom_list=in_deny_list, spelling_mistakes_max=in_deny_list, search_whole_phrase=max_fuzzy_spelling_mistakes_num)
nlp_analyser.registry.add_recognizer(new_custom_fuzzy_recogniser)
#analyzer = nlp_analyser #AnalyzerEngine()
batch_analyzer = BatchAnalyzerEngine(analyzer_engine=nlp_analyser)
anonymizer = AnonymizerEngine()#conflict_resolution=ConflictResolutionStrategy.MERGE_SIMILAR_OR_CONTAINED)
batch_anonymizer = BatchAnonymizerEngine(anonymizer_engine = anonymizer)
analyzer_results = []
if pii_identification_method == "Local":
# Use custom analyzer to be able to track progress with Gradio
custom_results = analyze_dict(batch_analyzer,
df_dict,
language=language,
entities=chosen_redact_entities,
score_threshold=score_threshold,
return_decision_process=True,
allow_list=in_allow_list_flat)
# Initialize results_by_column with custom entity results
for result in custom_results:
results_by_column[result.key] = result
# Convert the dictionary of results back to a list
analyzer_results = list(results_by_column.values())
# AWS Comprehend calls
elif pii_identification_method == "AWS Comprehend" and comprehend_client:
# Only run Local anonymisation for entities that are not covered by AWS Comprehend
if custom_entities:
custom_redact_entities = [
entity for entity in chosen_redact_comprehend_entities
if entity in custom_entities
]
if custom_redact_entities:
# Get results from analyze_dict
custom_results = analyze_dict(batch_analyzer,
df_dict,
language=language,
entities=custom_redact_entities,
score_threshold=score_threshold,
return_decision_process=True,
allow_list=in_allow_list_flat)
# Initialize results_by_column with custom entity results
for result in custom_results:
results_by_column[result.key] = result
max_retries = 3
retry_delay = 3
# Process each text column in the dictionary
for column_name, texts in progress.tqdm(df_dict.items(), desc="Querying AWS Comprehend service.", unit = "Columns"):
# Get or create DictAnalyzerResult for this column
if column_name in results_by_column:
column_results = results_by_column[column_name]
else:
column_results = DictAnalyzerResult(
recognizer_results=[[] for _ in texts],
key=column_name,
value=texts
)
# Process each text in the column
for text_idx, text in progress.tqdm(enumerate(texts), desc="Querying AWS Comprehend service.", unit = "Row"):
for attempt in range(max_retries):
try:
response = comprehend_client.detect_pii_entities(
Text=str(text),
LanguageCode=language
)
comprehend_query_number += 1
# Add all entities from this text to the column's recognizer_results
for entity in response["Entities"]:
if entity.get("Type") not in chosen_redact_comprehend_entities:
continue
recognizer_result = RecognizerResult(
entity_type=entity["Type"],
start=entity["BeginOffset"],
end=entity["EndOffset"],
score=entity["Score"]
)
column_results.recognizer_results[text_idx].append(recognizer_result)
break # Success, exit retry loop
except Exception as e:
if attempt == max_retries - 1:
print(f"AWS Comprehend calls failed for text: {text[:100]}... due to", e)
raise
time.sleep(retry_delay)
# Store or update the column results
results_by_column[column_name] = column_results
# Convert the dictionary of results back to a list
analyzer_results = list(results_by_column.values())
elif (pii_identification_method == "AWS Comprehend") & (not comprehend_client):
raise("Unable to redact, Comprehend connection details not found.")
else:
print("Unable to redact.")
# Usage in the main function:
decision_process_output_str = generate_decision_process_output(analyzer_results, df_dict)
analyse_toc = time.perf_counter()
analyse_time_out = f"Analysing the text took {analyse_toc - analyse_tic:0.1f} seconds."
print(analyse_time_out)
# Create faker function (note that it has to receive a value)
#fake = Faker("en_UK")
#def fake_first_name(x):
# return fake.first_name()
# Set up the anonymization configuration WITHOUT DATE_TIME
simple_replace_config = eval('{"DEFAULT": OperatorConfig("replace", {"new_value": "REDACTED"})}')
replace_config = eval('{"DEFAULT": OperatorConfig("replace")}')
redact_config = eval('{"DEFAULT": OperatorConfig("redact")}')
hash_config = eval('{"DEFAULT": OperatorConfig("hash")}')
mask_config = eval('{"DEFAULT": OperatorConfig("mask", {"masking_char":"*", "chars_to_mask":100, "from_end":True})}')
people_encrypt_config = eval('{"PERSON": OperatorConfig("encrypt", {"key": key_string})}') # The encryption is using AES cypher in CBC mode and requires a cryptographic key as an input for both the encryption and the decryption.
fake_first_name_config = eval('{"PERSON": OperatorConfig("custom", {"lambda": fake_first_name})}')
if anon_strat == "replace with 'REDACTED'": chosen_mask_config = simple_replace_config
if anon_strat == "replace with <ENTITY_NAME>": chosen_mask_config = replace_config
if anon_strat == "redact completely": chosen_mask_config = redact_config
if anon_strat == "hash": chosen_mask_config = hash_config
if anon_strat == "mask": chosen_mask_config = mask_config
if anon_strat == "encrypt":
chosen_mask_config = people_encrypt_config
# Generate a 128-bit AES key. Then encode the key using base64 to get a string representation
key = secrets.token_bytes(16) # 128 bits = 16 bytes
key_string = base64.b64encode(key).decode('utf-8')
elif anon_strat == "fake_first_name": chosen_mask_config = fake_first_name_config
# I think in general people will want to keep date / times - removed Mar 2025 as I don't want to assume for people.
#keep_date_config = eval('{"DATE_TIME": OperatorConfig("keep")}')
combined_config = {**chosen_mask_config} #, **keep_date_config}
anonymizer_results = batch_anonymizer.anonymize_dict(analyzer_results, operators=combined_config)
scrubbed_df = pd.DataFrame(anonymizer_results)
return scrubbed_df, key_string, decision_process_output_str |