File size: 34,837 Bytes
7810536
 
 
 
ff290e1
 
7810536
 
 
 
8c33828
7810536
8c33828
7810536
01c88c0
7810536
0ea8b9e
6319afc
ff290e1
 
7810536
 
 
 
 
 
 
 
f0f9378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93ac94f
8c33828
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93ac94f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c33828
 
 
 
 
 
 
 
 
93ac94f
 
8c33828
 
 
 
 
 
 
 
 
93ac94f
8c33828
 
7810536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff290e1
 
 
 
 
 
 
 
 
 
 
 
 
0ea8b9e
ff290e1
 
 
 
 
 
 
 
 
 
01c88c0
ff290e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c33828
ff290e1
 
 
 
 
01c88c0
ff290e1
 
 
 
 
 
 
 
 
 
 
 
 
7810536
01c88c0
8652429
 
 
ff290e1
 
7810536
ff290e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dacc782
ff290e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dacc782
ff290e1
 
 
 
 
 
dacc782
0ea8b9e
ff290e1
 
 
 
7810536
ff290e1
 
 
 
 
 
 
 
7810536
ff290e1
7810536
ff290e1
 
7810536
ff290e1
8c33828
ff290e1
 
7810536
ff290e1
 
 
 
 
7810536
ff290e1
7810536
ff290e1
 
 
 
 
 
7810536
ff290e1
7810536
ff290e1
 
 
 
7810536
ff290e1
 
 
 
 
 
7810536
ff290e1
7810536
ff290e1
 
7810536
ff290e1
7810536
ff290e1
bbf818d
dacc782
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff290e1
 
 
 
 
 
0ea8b9e
dacc782
 
ff290e1
dacc782
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff290e1
 
 
 
 
dacc782
 
7810536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff290e1
 
 
01c88c0
 
 
 
 
 
 
 
 
 
 
 
ff290e1
01c88c0
 
 
ff290e1
01c88c0
ff290e1
01c88c0
 
 
 
 
 
 
 
ff290e1
01c88c0
ff290e1
01c88c0
 
 
 
 
 
 
 
 
 
 
 
93ac94f
8c33828
 
 
01c88c0
93ac94f
01c88c0
 
8c33828
 
 
 
01c88c0
bbf818d
01c88c0
 
 
 
 
 
 
 
bbf818d
01c88c0
ff290e1
 
 
 
dacc782
ff290e1
 
20d940b
ff290e1
 
 
20d940b
ff290e1
 
01c88c0
 
8652429
 
 
bbf818d
ff290e1
 
 
7810536
ff290e1
 
7810536
ff290e1
 
7810536
ff290e1
 
 
 
7810536
ff290e1
 
 
7810536
ff290e1
 
01c88c0
ff290e1
7810536
ff290e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7810536
ff290e1
 
01c88c0
ff290e1
 
 
01c88c0
ff290e1
 
01c88c0
ff290e1
 
20d940b
ff290e1
 
 
 
 
 
 
 
01c88c0
ff290e1
 
 
 
 
 
 
 
 
 
 
01c88c0
ff290e1
 
7810536
ff290e1
7810536
ff290e1
bbf818d
ff290e1
7810536
ff290e1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
import re
import secrets
import base64
import time
import boto3
import botocore
import pandas as pd

from faker import Faker
from gradio import Progress
from typing import List, Dict, Any

from presidio_analyzer import AnalyzerEngine, BatchAnalyzerEngine, DictAnalyzerResult, RecognizerResult
from presidio_anonymizer import AnonymizerEngine, BatchAnonymizerEngine
from presidio_anonymizer.entities import OperatorConfig, ConflictResolutionStrategy

from tools.config import RUN_AWS_FUNCTIONS, AWS_ACCESS_KEY, AWS_SECRET_KEY, OUTPUT_FOLDER
from tools.helper_functions import get_file_name_without_type, read_file, detect_file_type
from tools.load_spacy_model_custom_recognisers import nlp_analyser, score_threshold, custom_word_list_recogniser, CustomWordFuzzyRecognizer, custom_entities
from tools.custom_image_analyser_engine import do_aws_comprehend_call
# Use custom version of analyze_dict to be able to track progress
from tools.presidio_analyzer_custom import analyze_dict


fake = Faker("en_UK")
def fake_first_name(x):
    return fake.first_name()

def initial_clean(text):
    #### Some of my cleaning functions
    html_pattern_regex = r'<.*?>|&([a-z0-9]+|#[0-9]{1,6}|#x[0-9a-f]{1,6});|\xa0|&nbsp;'
    html_start_pattern_end_dots_regex = r'<(.*?)\.\.'
    non_ascii_pattern = r'[^\x00-\x7F]+'
    multiple_spaces_regex = r'\s{2,}'
        
    # Define a list of patterns and their replacements
    patterns = [
        (html_pattern_regex, ' '),
        (html_start_pattern_end_dots_regex, ' '),
        (non_ascii_pattern, ' '),
        (multiple_spaces_regex, ' ')
    ]
    
    # Apply each regex replacement
    for pattern, replacement in patterns:
        text = re.sub(pattern, replacement, text)
    
    return text

def process_recognizer_result(result, recognizer_result, data_row, dictionary_key, df_dict, keys_to_keep):
        output = []

        if hasattr(result, 'value'):
            text = result.value[data_row]
        else:
            text = ""        

        if isinstance(recognizer_result, list):
            for sub_result in recognizer_result:
                if isinstance(text, str):
                    found_text = text[sub_result.start:sub_result.end]
                else:
                    found_text = ''
                analysis_explanation = {key: sub_result.__dict__[key] for key in keys_to_keep}
                analysis_explanation.update({
                    'data_row': str(data_row),
                    'column': list(df_dict.keys())[dictionary_key],
                    'entity': found_text
                })
                output.append(str(analysis_explanation))
        
        return output

# Writing decision making process to file
def generate_decision_process_output(analyzer_results: List[DictAnalyzerResult], df_dict: Dict[str, List[Any]]) -> str:
    """
    Generate a detailed output of the decision process for entity recognition.

    This function takes the results from the analyzer and the original data dictionary,
    and produces a string output detailing the decision process for each recognized entity.
    It includes information such as entity type, position, confidence score, and the context
    in which the entity was found.

    Args:
        analyzer_results (List[DictAnalyzerResult]): The results from the entity analyzer.
        df_dict (Dict[str, List[Any]]): The original data in dictionary format.

    Returns:
        str: A string containing the detailed decision process output.
    """
    decision_process_output = []
    keys_to_keep = ['entity_type', 'start', 'end']

    # Run through each column to analyse for PII
    for i, result in enumerate(analyzer_results):

        # If a single result
        if isinstance(result, RecognizerResult):
            decision_process_output.extend(process_recognizer_result(result, result, 0, i, df_dict, keys_to_keep))

        # If a list of results
        elif isinstance(result, list) or isinstance(result, DictAnalyzerResult):
            for x, recognizer_result in enumerate(result.recognizer_results):
                decision_process_output.extend(process_recognizer_result(result, recognizer_result, x, i, df_dict, keys_to_keep))

        else:
            try:
                decision_process_output.extend(process_recognizer_result(result, result, 0, i, df_dict, keys_to_keep))
            except Exception as e:
                print(e)

    decision_process_output_str = '\n'.join(decision_process_output)

    return decision_process_output_str

def anon_consistent_names(df):
    # ## Pick out common names and replace them with the same person value
    df_dict = df.to_dict(orient="list")

    analyzer = AnalyzerEngine()
    batch_analyzer = BatchAnalyzerEngine(analyzer_engine=analyzer)

    analyzer_results = batch_analyzer.analyze_dict(df_dict, language="en")
    analyzer_results = list(analyzer_results)

    # + tags=[]
    text = analyzer_results[3].value

    # + tags=[]
    recognizer_result = str(analyzer_results[3].recognizer_results)

    # + tags=[]
    recognizer_result

    # + tags=[]
    data_str = recognizer_result  # abbreviated for brevity

    # Adjusting the parse_dict function to handle trailing ']'
    # Splitting the main data string into individual list strings
    list_strs = data_str[1:-1].split('], [')

    def parse_dict(s):
        s = s.strip('[]')  # Removing any surrounding brackets
        items = s.split(', ')
        d = {}
        for item in items:
            key, value = item.split(': ')
            if key == 'score':
                d[key] = float(value)
            elif key in ['start', 'end']:
                d[key] = int(value)
            else:
                d[key] = value
        return d

    # Re-running the improved processing code

    result = []

    for lst_str in list_strs:
        # Splitting each list string into individual dictionary strings
        dict_strs = lst_str.split(', type: ')
        dict_strs = [dict_strs[0]] + ['type: ' + s for s in dict_strs[1:]]  # Prepending "type: " back to the split strings
        
        # Parsing each dictionary string
        dicts = [parse_dict(d) for d in dict_strs]
        result.append(dicts)

    #result

    # + tags=[]
    names = []

    for idx, paragraph in enumerate(text):
        paragraph_texts = []
        for dictionary in result[idx]:
            if dictionary['type'] == 'PERSON':
                paragraph_texts.append(paragraph[dictionary['start']:dictionary['end']])
        names.append(paragraph_texts)

    # + tags=[]
    # Flatten the list of lists and extract unique names
    unique_names = list(set(name for sublist in names for name in sublist))
    
    # + tags=[]
    fake_names = pd.Series(unique_names).apply(fake_first_name)

    # + tags=[]
    mapping_df = pd.DataFrame(data={"Unique names":unique_names,
                    "Fake names": fake_names})

    # + tags=[]
    # Convert mapping dataframe to dictionary
    # Convert mapping dataframe to dictionary, adding word boundaries for full-word match
    name_map = {r'\b' + k + r'\b': v for k, v in zip(mapping_df['Unique names'], mapping_df['Fake names'])}

    # + tags=[]
    name_map

    # + tags=[]
    scrubbed_df_consistent_names = df.replace(name_map, regex = True)

    # + tags=[]
    scrubbed_df_consistent_names

    return scrubbed_df_consistent_names

def anonymise_data_files(file_paths: List[str], 
                         in_text: str, 
                         anon_strat: str, 
                         chosen_cols: List[str],
                         language: str, 
                         chosen_redact_entities: List[str], 
                         in_allow_list: List[str] = None, 
                         latest_file_completed: int = 0, 
                         out_message: list = [], 
                         out_file_paths: list = [], 
                         log_files_output_paths: list = [],
                         in_excel_sheets: list = [],
                         first_loop_state: bool = False,
                         output_folder: str = OUTPUT_FOLDER,
                         in_deny_list:list[str]=[],
                         max_fuzzy_spelling_mistakes_num:int=0,
                         pii_identification_method:str="Local",
                         chosen_redact_comprehend_entities:List[str]=[],
                         comprehend_query_number:int=0,
                         aws_access_key_textbox:str='',
                         aws_secret_key_textbox:str='',
                         progress: Progress = Progress(track_tqdm=True)):
    """
    This function anonymises data files based on the provided parameters.

    Parameters:
    - file_paths (List[str]): A list of file paths to anonymise.
    - in_text (str): The text to anonymise if file_paths is 'open_text'.
    - anon_strat (str): The anonymisation strategy to use.
    - chosen_cols (List[str]): A list of column names to anonymise.
    - language (str): The language of the text to anonymise.
    - chosen_redact_entities (List[str]): A list of entities to redact.
    - in_allow_list (List[str], optional): A list of allowed values. Defaults to None.
    - latest_file_completed (int, optional): The index of the last file completed. Defaults to 0.
    - out_message (list, optional): A list to store output messages. Defaults to an empty list.
    - out_file_paths (list, optional): A list to store output file paths. Defaults to an empty list.
    - log_files_output_paths (list, optional): A list to store log file paths. Defaults to an empty list.
    - in_excel_sheets (list, optional): A list of Excel sheet names. Defaults to an empty list.
    - first_loop_state (bool, optional): Indicates if this is the first loop iteration. Defaults to False.
    - output_folder (str, optional): The output folder path. Defaults to the global output_folder variable.
    - in_deny_list (list[str], optional): A list of specific terms to redact.
    - max_fuzzy_spelling_mistakes_num (int, optional): The maximum number of spelling mistakes allowed in a searched phrase for fuzzy matching. Can range from 0-9.
    - pii_identification_method (str, optional): The method to redact personal information. Either 'Local' (spacy model), or 'AWS Comprehend' (AWS Comprehend API).    
    - chosen_redact_comprehend_entities (List[str]): A list of entity types to redact from files, chosen from the official list from AWS Comprehend service.
    - comprehend_query_number (int, optional): A counter tracking the number of queries to AWS Comprehend.
    - aws_access_key_textbox (str, optional): AWS access key for account with Textract and Comprehend permissions.
    - aws_secret_key_textbox (str, optional): AWS secret key for account with Textract and Comprehend permissions.
    - progress (Progress, optional): A Progress object to track progress. Defaults to a Progress object with track_tqdm=True.
    """
    
    tic = time.perf_counter()
    comprehend_client = ""

    # If this is the first time around, set variables to 0/blank
    if first_loop_state==True:
        latest_file_completed = 0
        out_message = []
        out_file_paths = []

    # Load file
    # If out message or out_file_paths are blank, change to a list so it can be appended to
    if isinstance(out_message, str):
        out_message = [out_message]

    #print("log_files_output_paths:",log_files_output_paths)

    if isinstance(log_files_output_paths, str):
        log_files_output_paths = []

    if not out_file_paths:
        out_file_paths = []  
    

    if in_allow_list:
        in_allow_list_flat = in_allow_list #[item for sublist in in_allow_list for item in sublist]
    else:
        in_allow_list_flat = []
    
    anon_df = pd.DataFrame()

     # Try to connect to AWS services directly only if RUN_AWS_FUNCTIONS environmental variable is 1, otherwise an environment variable or direct textbox input is needed.
    if pii_identification_method == "AWS Comprehend":
        print("Trying to connect to AWS Comprehend service")
        if aws_access_key_textbox and aws_secret_key_textbox:
            print("Connecting to Comprehend using AWS access key and secret keys from textboxes.")
            print("aws_access_key_textbox:", aws_access_key_textbox)
            print("aws_secret_access_key:", aws_secret_key_textbox)
            comprehend_client = boto3.client('comprehend', 
                aws_access_key_id=aws_access_key_textbox, 
                aws_secret_access_key=aws_secret_key_textbox)
        elif RUN_AWS_FUNCTIONS == "1":
            print("Connecting to Comprehend via existing SSO connection")
            comprehend_client = boto3.client('comprehend')
        elif AWS_ACCESS_KEY and AWS_SECRET_KEY:
            print("Getting Comprehend credentials from environment variables")
            comprehend_client = boto3.client('comprehend', 
                aws_access_key_id=AWS_ACCESS_KEY, 
                aws_secret_access_key=AWS_SECRET_KEY)               
        else:
            comprehend_client = ""
            out_message = "Cannot connect to AWS Comprehend service. Please provide access keys under Textract settings on the Redaction settings tab, or choose another PII identification method."
            print(out_message)
    
    # Check if files and text exist
    if not file_paths:
        if in_text:
            file_paths=['open_text']
        else:
            out_message = "Please enter text or a file to redact."
            return out_message, out_file_paths, out_file_paths, latest_file_completed, log_files_output_paths, log_files_output_paths
        
    # If we have already redacted the last file, return the input out_message and file list to the relevant components
    if latest_file_completed >= len(file_paths):
        print("Last file reached") #, returning files:", str(latest_file_completed))
        # Set to a very high number so as not to mess with subsequent file processing by the user
        latest_file_completed = 99
        final_out_message = '\n'.join(out_message)
        return final_out_message, out_file_paths, out_file_paths, latest_file_completed, log_files_output_paths, log_files_output_paths
    
    file_path_loop = [file_paths[int(latest_file_completed)]]
        
    for anon_file in progress.tqdm(file_path_loop, desc="Anonymising files", unit = "file"):

        if anon_file=='open_text':
            anon_df = pd.DataFrame(data={'text':[in_text]})
            chosen_cols=['text']
            sheet_name = ""
            file_type = ""
            out_file_part = anon_file

            out_file_paths, out_message, key_string, log_files_output_paths = anon_wrapper_func(anon_file, anon_df, chosen_cols, out_file_paths, out_file_part, out_message, sheet_name, anon_strat, language, chosen_redact_entities, in_allow_list, file_type, "", log_files_output_paths, in_deny_list, max_fuzzy_spelling_mistakes_num, pii_identification_method, chosen_redact_comprehend_entities, comprehend_query_number, comprehend_client, output_folder=OUTPUT_FOLDER)
        else:
            # If file is an xlsx, we are going to run through all the Excel sheets to anonymise them separately.
            file_type = detect_file_type(anon_file)
            print("File type is:", file_type)

            out_file_part = get_file_name_without_type(anon_file.name)
    
            if file_type == 'xlsx':
                print("Running through all xlsx sheets")
                #anon_xlsx = pd.ExcelFile(anon_file)
                if not in_excel_sheets:
                    out_message.append("No Excel sheets selected. Please select at least one to anonymise.")
                    continue

                anon_xlsx = pd.ExcelFile(anon_file)                

                # Create xlsx file:
                anon_xlsx_export_file_name = output_folder + out_file_part + "_redacted.xlsx"

                from openpyxl import Workbook

                wb = Workbook()
                wb.save(anon_xlsx_export_file_name)

                # Iterate through the sheet names
                for sheet_name in in_excel_sheets:
                    # Read each sheet into a DataFrame
                    if sheet_name not in anon_xlsx.sheet_names:
                        continue

                    anon_df = pd.read_excel(anon_file, sheet_name=sheet_name)

                    out_file_paths, out_message, key_string, log_files_output_paths  = anon_wrapper_func(anon_file, anon_df, chosen_cols, out_file_paths, out_file_part, out_message, sheet_name, anon_strat, language, chosen_redact_entities, in_allow_list, file_type, "", log_files_output_paths, in_deny_list, max_fuzzy_spelling_mistakes_num, pii_identification_method, chosen_redact_comprehend_entities, comprehend_query_number, comprehend_client, output_folder=output_folder)
                    
            else:
                sheet_name = ""
                anon_df = read_file(anon_file)
                out_file_part = get_file_name_without_type(anon_file.name)

                out_file_paths, out_message, key_string, log_files_output_paths = anon_wrapper_func(anon_file, anon_df, chosen_cols, out_file_paths, out_file_part, out_message, sheet_name, anon_strat, language, chosen_redact_entities, in_allow_list, file_type, "", log_files_output_paths, in_deny_list, max_fuzzy_spelling_mistakes_num, pii_identification_method, chosen_redact_comprehend_entities, comprehend_query_number, comprehend_client, output_folder=output_folder)

        # Increase latest file completed count unless we are at the last file
        if latest_file_completed != len(file_paths):
            print("Completed file number:", str(latest_file_completed))
            latest_file_completed += 1 

        toc = time.perf_counter()
        out_time = f"in {toc - tic:0.1f} seconds."
        print(out_time)    
        
        if anon_strat == "encrypt":
            out_message.append(". Your decryption key is " + key_string + ".")

        out_message.append("Anonymisation of file '" + out_file_part + "' successfully completed in")

        out_message_out = '\n'.join(out_message)
        out_message_out = out_message_out + " " + out_time

        out_message_out = out_message_out + "\n\nGo to to the Redaction settings tab to see redaction logs. Please give feedback on the results below to help improve this app."
    
    return out_message_out, out_file_paths, out_file_paths, latest_file_completed, log_files_output_paths, log_files_output_paths

def anon_wrapper_func(
    anon_file: str, 
    anon_df: pd.DataFrame, 
    chosen_cols: List[str], 
    out_file_paths: List[str], 
    out_file_part: str, 
    out_message: str, 
    excel_sheet_name: str, 
    anon_strat: str, 
    language: str, 
    chosen_redact_entities: List[str], 
    in_allow_list: List[str], 
    file_type: str, 
    anon_xlsx_export_file_name: str, 
    log_files_output_paths: List[str],
    in_deny_list: List[str]=[],
    max_fuzzy_spelling_mistakes_num:int=0,
    pii_identification_method:str="Local",
    chosen_redact_comprehend_entities:List[str]=[], 
    comprehend_query_number:int=0,
    comprehend_client:botocore.client.BaseClient="",
    output_folder: str = OUTPUT_FOLDER
):
    """
    This function wraps the anonymisation process for a given dataframe. It filters the dataframe based on chosen columns, applies the specified anonymisation strategy using the anonymise_script function, and exports the anonymised data to a file.

    Input Variables:
    - anon_file: The path to the file containing the data to be anonymized.
    - anon_df: The pandas DataFrame containing the data to be anonymized.
    - chosen_cols: A list of column names to be anonymized.
    - out_file_paths: A list of paths where the anonymized files will be saved.
    - out_file_part: A part of the output file name.
    - out_message: A message to be displayed during the anonymization process.
    - excel_sheet_name: The name of the Excel sheet where the anonymized data will be exported.
    - anon_strat: The anonymization strategy to be applied.
    - language: The language of the data to be anonymized.
    - chosen_redact_entities: A list of entities to be redacted.
    - in_allow_list: A list of allowed values.
    - file_type: The type of file to be exported.
    - anon_xlsx_export_file_name: The name of the anonymized Excel file.
    - log_files_output_paths: A list of paths where the log files will be saved.
    - in_deny_list: List of specific terms to remove from the data.
    - max_fuzzy_spelling_mistakes_num (int, optional): The maximum number of spelling mistakes allowed in a searched phrase for fuzzy matching. Can range from 0-9.
    - pii_identification_method (str, optional): The method to redact personal information. Either 'Local' (spacy model), or 'AWS Comprehend' (AWS Comprehend API).    
    - chosen_redact_comprehend_entities (List[str]): A list of entity types to redact from files, chosen from the official list from AWS Comprehend service.
    - comprehend_query_number (int, optional): A counter tracking the number of queries to AWS Comprehend.
    - comprehend_client (optional): The client object from AWS containing a client connection to AWS Comprehend if that option is chosen on the first tab. 
    - output_folder: The folder where the anonymized files will be saved. Defaults to the 'output_folder' variable.
    """
    def check_lists(list1, list2):
            return any(string in list2 for string in list1)
        
    def get_common_strings(list1, list2):
        """
        Finds the common strings between two lists.

        Args:
            list1: The first list of strings.
            list2: The second list of strings.

        Returns:
            A list containing the common strings.
        """
        common_strings = []
        for string in list1:
            if string in list2:
                common_strings.append(string)
        return common_strings

    if pii_identification_method == "AWS Comprehend" and comprehend_client == "":
        raise("Connection to AWS Comprehend service not found, please check connection details.")
    
    # Check for chosen col, skip file if not found
    all_cols_original_order = list(anon_df.columns)

    any_cols_found = check_lists(chosen_cols, all_cols_original_order)

    if any_cols_found == False:
        out_message = "No chosen columns found in dataframe: " + out_file_part
        print(out_message)
    else:
        chosen_cols_in_anon_df = get_common_strings(chosen_cols, all_cols_original_order)

    # Split dataframe to keep only selected columns
    #print("Remaining columns to redact:", chosen_cols_in_anon_df)
    
    anon_df_part = anon_df[chosen_cols_in_anon_df]
    anon_df_remain = anon_df.drop(chosen_cols_in_anon_df, axis = 1)

    # Anonymise the selected columns
    anon_df_part_out, key_string, decision_process_output_str = anonymise_script(anon_df_part, anon_strat, language, chosen_redact_entities, in_allow_list, in_deny_list, max_fuzzy_spelling_mistakes_num, pii_identification_method, chosen_redact_comprehend_entities, comprehend_query_number, comprehend_client)
        
    # Rejoin the dataframe together
    anon_df_out = pd.concat([anon_df_part_out, anon_df_remain], axis = 1)
    anon_df_out = anon_df_out[all_cols_original_order]
    
    # Export file

    #  Rename anonymisation strategy for file path naming
    if anon_strat == "replace with 'REDACTED'": anon_strat_txt = "redact_replace"
    elif anon_strat == "replace with <ENTITY_NAME>": anon_strat_txt = "redact_entity_type"
    elif anon_strat == "redact completely": anon_strat_txt = "redact_remove"
    else: anon_strat_txt = anon_strat

    # If the file is an xlsx, add a new sheet to the existing xlsx. Otherwise, write to csv
    if file_type == 'xlsx':

        anon_export_file_name = anon_xlsx_export_file_name

        # Create a Pandas Excel writer using XlsxWriter as the engine.
        with pd.ExcelWriter(anon_xlsx_export_file_name, engine='openpyxl', mode='a') as writer:
            # Write each DataFrame to a different worksheet.
            anon_df_out.to_excel(writer, sheet_name=excel_sheet_name, index=None)

        decision_process_log_output_file = anon_xlsx_export_file_name + "_" + excel_sheet_name + "_decision_process_output.txt"
        with open(decision_process_log_output_file, "w") as f:
            f.write(decision_process_output_str)

    else:
        anon_export_file_name = output_folder + out_file_part + "_anon_" + anon_strat_txt + ".csv"
        anon_df_out.to_csv(anon_export_file_name, index = None)

        decision_process_log_output_file = anon_export_file_name + "_decision_process_output.txt"
        with open(decision_process_log_output_file, "w") as f:
            f.write(decision_process_output_str)

    out_file_paths.append(anon_export_file_name)
    log_files_output_paths.append(decision_process_log_output_file)

    # As files are created in a loop, there is a risk of duplicate file names being output. Use set to keep uniques.
    out_file_paths = list(set(out_file_paths))

    # Print result text to output text box if just anonymising open text
    if anon_file=='open_text':
        out_message = [anon_df_out['text'][0]]

    return out_file_paths, out_message, key_string, log_files_output_paths
       
def anonymise_script(df:pd.DataFrame, anon_strat:str, language:str, chosen_redact_entities:List[str], in_allow_list:List[str]=[], in_deny_list:List[str]=[], max_fuzzy_spelling_mistakes_num:int=0, pii_identification_method:str="Local", chosen_redact_comprehend_entities:List[str]=[], comprehend_query_number:int=0, comprehend_client:botocore.client.BaseClient="", custom_entities=custom_entities, progress=Progress(track_tqdm=False)):
    '''
    Conduct anonymisation of a dataframe using Presidio and/or AWS Comprehend if chosen.
    '''

    print("Identifying personal information")
    analyse_tic = time.perf_counter()

    # Initialize analyzer_results as an empty dictionary to store results by column
    results_by_column = {}
    key_string = ""

    # DataFrame to dict
    df_dict = df.to_dict(orient="list")

    if in_allow_list:
        in_allow_list_flat = in_allow_list #[item for sublist in in_allow_list for item in sublist]
    else:
        in_allow_list_flat = []

    if isinstance(in_deny_list, pd.DataFrame):
        if not in_deny_list.empty:
            in_deny_list = in_deny_list.iloc[:, 0].tolist()
        else:
            # Handle the case where the DataFrame is empty
            in_deny_list = []  # or some default value

        # Sort the strings in order from the longest string to the shortest
        in_deny_list = sorted(in_deny_list, key=len, reverse=True)

    if in_deny_list:        
        nlp_analyser.registry.remove_recognizer("CUSTOM")
        new_custom_recogniser = custom_word_list_recogniser(in_deny_list)
        nlp_analyser.registry.add_recognizer(new_custom_recogniser)

        nlp_analyser.registry.remove_recognizer("CustomWordFuzzyRecognizer")
        new_custom_fuzzy_recogniser = CustomWordFuzzyRecognizer(supported_entities=["CUSTOM_FUZZY"], custom_list=in_deny_list, spelling_mistakes_max=in_deny_list, search_whole_phrase=max_fuzzy_spelling_mistakes_num)
        nlp_analyser.registry.add_recognizer(new_custom_fuzzy_recogniser)

    #analyzer = nlp_analyser #AnalyzerEngine()
    batch_analyzer = BatchAnalyzerEngine(analyzer_engine=nlp_analyser)

    anonymizer = AnonymizerEngine()#conflict_resolution=ConflictResolutionStrategy.MERGE_SIMILAR_OR_CONTAINED)

    batch_anonymizer = BatchAnonymizerEngine(anonymizer_engine = anonymizer)
    
    analyzer_results = []

    if pii_identification_method == "Local":

        # Use custom analyzer to be able to track progress with Gradio
        custom_results = analyze_dict(batch_analyzer,
                                        df_dict,
                                        language=language, 
                                        entities=chosen_redact_entities,
                                        score_threshold=score_threshold,
                                        return_decision_process=True,
                                        allow_list=in_allow_list_flat)
        
        # Initialize results_by_column with custom entity results
        for result in custom_results:
            results_by_column[result.key] = result

        # Convert the dictionary of results back to a list
        analyzer_results = list(results_by_column.values())

    # AWS Comprehend calls
    elif pii_identification_method == "AWS Comprehend" and comprehend_client:
                
        # Only run Local anonymisation for entities that are not covered by AWS Comprehend
        if custom_entities:
            custom_redact_entities = [
                entity for entity in chosen_redact_comprehend_entities 
                if entity in custom_entities
            ]
            if custom_redact_entities:
                # Get results from analyze_dict
                custom_results = analyze_dict(batch_analyzer,
                                    df_dict,
                                    language=language, 
                                    entities=custom_redact_entities,
                                    score_threshold=score_threshold,
                                    return_decision_process=True,
                                    allow_list=in_allow_list_flat)
                
                # Initialize results_by_column with custom entity results
                for result in custom_results:
                    results_by_column[result.key] = result

        max_retries = 3
        retry_delay = 3

        # Process each text column in the dictionary
        for column_name, texts in progress.tqdm(df_dict.items(), desc="Querying AWS Comprehend service.", unit = "Columns"):
            # Get or create DictAnalyzerResult for this column
            if column_name in results_by_column:
                column_results = results_by_column[column_name]
            else:
                column_results = DictAnalyzerResult(
                    recognizer_results=[[] for _ in texts],
                    key=column_name,
                    value=texts
                )

            # Process each text in the column
            for text_idx, text in progress.tqdm(enumerate(texts), desc="Querying AWS Comprehend service.", unit = "Row"):

                for attempt in range(max_retries):
                    try:
                        response = comprehend_client.detect_pii_entities(
                            Text=str(text),
                            LanguageCode=language
                        )

                        comprehend_query_number += 1

                        # Add all entities from this text to the column's recognizer_results
                        for entity in response["Entities"]:
                            if entity.get("Type") not in chosen_redact_comprehend_entities:
                                continue

                            recognizer_result = RecognizerResult(
                                entity_type=entity["Type"],
                                start=entity["BeginOffset"],
                                end=entity["EndOffset"],
                                score=entity["Score"]
                            )
                            column_results.recognizer_results[text_idx].append(recognizer_result)
                        
                        break  # Success, exit retry loop
                        
                    except Exception as e:
                        if attempt == max_retries - 1:
                            print(f"AWS Comprehend calls failed for text: {text[:100]}... due to", e)
                            raise
                        time.sleep(retry_delay)

            # Store or update the column results
            results_by_column[column_name] = column_results

        # Convert the dictionary of results back to a list
        analyzer_results = list(results_by_column.values())

    elif (pii_identification_method == "AWS Comprehend") & (not comprehend_client):
        raise("Unable to redact, Comprehend connection details not found.")
    
    else:
        print("Unable to redact.")

    # Usage in the main function:
    decision_process_output_str = generate_decision_process_output(analyzer_results, df_dict)

    analyse_toc = time.perf_counter()
    analyse_time_out = f"Analysing the text took {analyse_toc - analyse_tic:0.1f} seconds."
    print(analyse_time_out)

    # Create faker function (note that it has to receive a value)
    #fake = Faker("en_UK")

    #def fake_first_name(x):
    #    return fake.first_name()

    # Set up the anonymization configuration WITHOUT DATE_TIME
    simple_replace_config = eval('{"DEFAULT": OperatorConfig("replace", {"new_value": "REDACTED"})}')
    replace_config = eval('{"DEFAULT": OperatorConfig("replace")}')
    redact_config = eval('{"DEFAULT": OperatorConfig("redact")}')
    hash_config = eval('{"DEFAULT": OperatorConfig("hash")}')
    mask_config = eval('{"DEFAULT": OperatorConfig("mask", {"masking_char":"*", "chars_to_mask":100, "from_end":True})}')
    people_encrypt_config = eval('{"PERSON": OperatorConfig("encrypt", {"key": key_string})}') # The encryption is using AES cypher in CBC mode and requires a cryptographic key as an input for both the encryption and the decryption.
    fake_first_name_config = eval('{"PERSON": OperatorConfig("custom", {"lambda": fake_first_name})}')

    if anon_strat == "replace with 'REDACTED'": chosen_mask_config = simple_replace_config
    if anon_strat == "replace with <ENTITY_NAME>": chosen_mask_config = replace_config
    if anon_strat == "redact completely": chosen_mask_config = redact_config
    if anon_strat == "hash": chosen_mask_config = hash_config
    if anon_strat == "mask": chosen_mask_config = mask_config
    if anon_strat == "encrypt": 
        chosen_mask_config = people_encrypt_config
        # Generate a 128-bit AES key. Then encode the key using base64 to get a string representation
        key = secrets.token_bytes(16)  # 128 bits = 16 bytes 
        key_string = base64.b64encode(key).decode('utf-8')
    elif anon_strat == "fake_first_name": chosen_mask_config = fake_first_name_config

    # I think in general people will want to keep date / times - removed Mar 2025 as I don't want to assume for people.
    #keep_date_config = eval('{"DATE_TIME": OperatorConfig("keep")}')

    combined_config = {**chosen_mask_config} #, **keep_date_config}

    anonymizer_results = batch_anonymizer.anonymize_dict(analyzer_results, operators=combined_config)

    scrubbed_df = pd.DataFrame(anonymizer_results)
    
    return scrubbed_df, key_string, decision_process_output_str