Spaces:
Sleeping
Sleeping
File size: 25,434 Bytes
641ff3e eea5c07 cb349ad 7810536 bde6e5b eea5c07 a770956 0ea8b9e ec98119 ed5f8c7 e2aae24 f0c28d7 e2aae24 0ea8b9e e2aae24 bde6e5b 0ea8b9e bde6e5b ed5f8c7 0ea8b9e bde6e5b 66e145d bde6e5b 390bef2 ed5f8c7 0ea8b9e ed5f8c7 0ea8b9e 4276db1 0ea8b9e ed5f8c7 0ea8b9e ed5f8c7 0ea8b9e ed5f8c7 0e1a4a7 390bef2 bde6e5b 641ff3e 2a4b347 7810536 6b28cfa 7810536 0ea8b9e 2a4b347 0ea8b9e 2a4b347 0ea8b9e 2a4b347 0ea8b9e 2a4b347 0e1a4a7 6ea0852 0e1a4a7 6ea0852 390bef2 6ea0852 390bef2 0e1a4a7 6ea0852 0e1a4a7 cb349ad a770956 390bef2 6ea0852 a770956 0e1a4a7 6ea0852 0e1a4a7 6ea0852 0ea8b9e 7810536 01c88c0 7810536 01c88c0 7810536 01c88c0 7810536 01c88c0 7810536 01c88c0 2a4b347 0ea8b9e a33b955 2a4b347 a33b955 2a4b347 01c88c0 2a4b347 bc22fc4 8c33828 eea5c07 8c33828 0ea8b9e 8c33828 bf7bb79 0ea8b9e bde6e5b ed5f8c7 275c820 0ea8b9e 8235bbb bf7bb79 8235bbb bf7bb79 8235bbb 0ea8b9e 8235bbb 0ea8b9e bc22fc4 f0c28d7 cb349ad 0ea8b9e cb349ad f0c28d7 8235bbb bc22fc4 dacc782 0ea8b9e ed5f8c7 dacc782 0ea8b9e dacc782 0ea8b9e dacc782 ed5f8c7 eea5c07 0ea8b9e eea5c07 dacc782 0ea8b9e dacc782 0ea8b9e ed5f8c7 0ea8b9e ed5f8c7 0ea8b9e ed5f8c7 0ea8b9e 4276db1 dacc782 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 |
import os
import re
import boto3
from botocore.exceptions import ClientError
import gradio as gr
import pandas as pd
import numpy as np
import unicodedata
from typing import List
from math import ceil
from gradio_image_annotation import image_annotator
from tools.config import CUSTOM_HEADER_VALUE, CUSTOM_HEADER, OUTPUT_FOLDER, INPUT_FOLDER, SESSION_OUTPUT_FOLDER, AWS_USER_POOL_ID, TEXTRACT_BULK_ANALYSIS_INPUT_SUBFOLDER, TEXTRACT_BULK_ANALYSIS_OUTPUT_SUBFOLDER, TEXTRACT_JOBS_S3_LOC, TEXTRACT_JOBS_LOCAL_LOC
# Names for options labels
text_ocr_option = "Local model - selectable text"
tesseract_ocr_option = "Local OCR model - PDFs without selectable text"
textract_option = "AWS Textract service - all PDF types"
no_redaction_option = "Only extract text (no redaction)"
local_pii_detector = "Local"
aws_pii_detector = "AWS Comprehend"
def reset_state_vars():
return [], pd.DataFrame(), pd.DataFrame(), 0, "", image_annotator(
label="Modify redaction boxes",
label_list=["Redaction"],
label_colors=[(0, 0, 0)],
show_label=False,
sources=None,#["upload"],
show_clear_button=False,
show_share_button=False,
show_remove_button=False,
interactive=False
), [], [], pd.DataFrame(), pd.DataFrame(), [], [], "", False
def reset_ocr_results_state():
return pd.DataFrame(), pd.DataFrame(), []
def reset_review_vars():
return pd.DataFrame(), pd.DataFrame()
def load_in_default_allow_list(allow_list_file_path):
if isinstance(allow_list_file_path, str):
allow_list_file_path = [allow_list_file_path]
return allow_list_file_path
def load_in_default_cost_codes(cost_codes_path:str, default_cost_code:str=""):
'''
Load in the cost codes list from file.
'''
cost_codes_df = pd.read_csv(cost_codes_path)
dropdown_choices = cost_codes_df.iloc[:, 0].astype(str).tolist()
# Avoid inserting duplicate or empty cost code values
if default_cost_code and default_cost_code not in dropdown_choices:
dropdown_choices.insert(0, default_cost_code)
# Always have a blank option at the top
if "" not in dropdown_choices:
dropdown_choices.insert(0, "")
out_dropdown = gr.Dropdown(
value=default_cost_code if default_cost_code in dropdown_choices else "",
label="Choose cost code for analysis",
choices=dropdown_choices,
allow_custom_value=False
)
return cost_codes_df, cost_codes_df, out_dropdown
def enforce_cost_codes(enforce_cost_code_textbox:str, cost_code_choice:str, cost_code_df:pd.DataFrame, verify_cost_codes:bool=True):
'''
Check if the enforce cost codes variable is set to true, and then check that a cost cost has been chosen. If not, raise an error. Then, check against the values in the cost code dataframe to ensure that the cost code exists.
'''
if enforce_cost_code_textbox == "True":
if not cost_code_choice:
raise Exception("Please choose a cost code before continuing")
if verify_cost_codes == True:
if cost_code_df.empty:
raise Exception("No cost codes present in dataframe for verification")
else:
valid_cost_codes_list = list(cost_code_df.iloc[:,0].unique())
if not cost_code_choice in valid_cost_codes_list:
raise Exception("Selected cost code not found in list. Please contact Finance if you cannot find the correct cost code from the given list of suggestions.")
return
def update_cost_code_dataframe_from_dropdown_select(cost_dropdown_selection:str, cost_code_df:pd.DataFrame):
cost_code_df = cost_code_df.loc[cost_code_df.iloc[:,0] == cost_dropdown_selection, :
]
return cost_code_df
def update_dataframe(df:pd.DataFrame):
df_copy = df.copy()
return df_copy
def get_file_name_without_type(file_path):
# First, get the basename of the file (e.g., "example.txt" from "/path/to/example.txt")
basename = os.path.basename(file_path)
# Then, split the basename and its extension and return only the basename without the extension
filename_without_extension, _ = os.path.splitext(basename)
#print(filename_without_extension)
return filename_without_extension
def detect_file_type(filename):
"""Detect the file type based on its extension."""
if (filename.endswith('.csv')) | (filename.endswith('.csv.gz')) | (filename.endswith('.zip')):
return 'csv'
elif filename.endswith('.xlsx'):
return 'xlsx'
elif filename.endswith('.parquet'):
return 'parquet'
elif filename.endswith('.pdf'):
return 'pdf'
elif filename.endswith('.jpg'):
return 'jpg'
elif filename.endswith('.jpeg'):
return 'jpeg'
elif filename.endswith('.png'):
return 'png'
elif filename.endswith('.xfdf'):
return 'xfdf'
else:
raise ValueError("Unsupported file type.")
def read_file(filename):
"""Read the file based on its detected type."""
file_type = detect_file_type(filename)
if file_type == 'csv':
return pd.read_csv(filename, low_memory=False)
elif file_type == 'xlsx':
return pd.read_excel(filename)
elif file_type == 'parquet':
return pd.read_parquet(filename)
def ensure_output_folder_exists(output_folder:str):
"""Checks if the specified folder exists, creates it if not."""
if not os.path.exists(output_folder):
# Create the folder if it doesn't exist
os.makedirs(output_folder)
print(f"Created the {output_folder} folder.")
else:
print(f"The {output_folder} folder already exists.")
def custom_regex_load(in_file:List[str], file_type:str = "allow_list"):
'''
When file is loaded, update the column dropdown choices and write to relevant data states.
'''
custom_regex_df = pd.DataFrame()
if in_file:
file_list = [string.name for string in in_file]
regex_file_names = [string for string in file_list if "csv" in string.lower()]
if regex_file_names:
regex_file_name = regex_file_names[0]
custom_regex_df = pd.read_csv(regex_file_name, low_memory=False, header=None)
# Select just first columns
custom_regex_df = pd.DataFrame(custom_regex_df.iloc[:,[0]])
custom_regex_df.rename(columns={0:file_type}, inplace=True)
custom_regex_df.columns = custom_regex_df.columns.astype(str)
output_text = file_type + " file loaded."
print(output_text)
else:
output_text = "No file provided."
print(output_text)
return output_text, custom_regex_df
return output_text, custom_regex_df
def put_columns_in_df(in_file:List[str]):
new_choices = []
concat_choices = []
all_sheet_names = []
number_of_excel_files = 0
for file in in_file:
file_name = file.name
file_type = detect_file_type(file_name)
print("File type is:", file_type)
if file_type == 'xlsx':
number_of_excel_files += 1
new_choices = []
print("Running through all xlsx sheets")
anon_xlsx = pd.ExcelFile(file_name)
new_sheet_names = anon_xlsx.sheet_names
# Iterate through the sheet names
for sheet_name in new_sheet_names:
# Read each sheet into a DataFrame
df = pd.read_excel(file_name, sheet_name=sheet_name)
# Process the DataFrame (e.g., print its contents)
print(f"Sheet Name: {sheet_name}")
print(df.head()) # Print the first few rows
new_choices.extend(list(df.columns))
all_sheet_names.extend(new_sheet_names)
else:
df = read_file(file_name)
new_choices = list(df.columns)
concat_choices.extend(new_choices)
# Drop duplicate columns
concat_choices = list(set(concat_choices))
if number_of_excel_files > 0:
return gr.Dropdown(choices=concat_choices, value=concat_choices), gr.Dropdown(choices=all_sheet_names, value=all_sheet_names, visible=True)
else:
return gr.Dropdown(choices=concat_choices, value=concat_choices), gr.Dropdown(visible=False)
def check_for_existing_textract_file(doc_file_name_no_extension_textbox:str, output_folder:str=OUTPUT_FOLDER):
textract_output_path = os.path.join(output_folder, doc_file_name_no_extension_textbox + "_textract.json")
if os.path.exists(textract_output_path):
print("Existing Textract file found.")
return True
else:
return False
#
def add_folder_to_path(folder_path: str):
'''
Check if a folder exists on your system. If so, get the absolute path and then add it to the system Path variable if it doesn't already exist. Function is only relevant for locally-created executable files based on this app (when using pyinstaller it creates a _internal folder that contains tesseract and poppler. These need to be added to the system path to enable the app to run)
'''
if os.path.exists(folder_path) and os.path.isdir(folder_path):
print(folder_path, "folder exists.")
# Resolve relative path to absolute path
absolute_path = os.path.abspath(folder_path)
current_path = os.environ['PATH']
if absolute_path not in current_path.split(os.pathsep):
full_path_extension = absolute_path + os.pathsep + current_path
os.environ['PATH'] = full_path_extension
#print(f"Updated PATH with: ", full_path_extension)
else:
print(f"Directory {folder_path} already exists in PATH.")
else:
print(f"Folder not found at {folder_path} - not added to PATH")
# Upon running a process, the feedback buttons are revealed
def reveal_feedback_buttons():
return gr.Radio(visible=True, label="Please give some feedback about the results of the redaction. A reminder that the app is only expected to identify about 60% of personally identifiable information in a given (typed) document."), gr.Textbox(visible=True), gr.Button(visible=True), gr.Markdown(visible=True)
def wipe_logs(feedback_logs_loc:str, usage_logs_loc:str):
try:
os.remove(feedback_logs_loc)
except Exception as e:
print("Could not remove feedback logs file", e)
try:
os.remove(usage_logs_loc)
except Exception as e:
print("Could not remove usage logs file", e)
def merge_csv_files(file_list:List[str], output_folder:str=OUTPUT_FOLDER):
# Initialise an empty list to hold DataFrames
dataframes = []
output_files = []
# Loop through each file in the file list
for file in file_list:
# Read the CSV file into a DataFrame
df = pd.read_csv(file.name)
dataframes.append(df)
# Concatenate all DataFrames into a single DataFrame
merged_df = pd.concat(dataframes, ignore_index=True)
for col in ['xmin', 'xmax', 'ymin', 'ymax']:
merged_df[col] = np.floor(merged_df[col])
merged_df = merged_df.drop_duplicates(subset=['page', 'label', 'color', 'xmin', 'ymin', 'xmax', 'ymax'])
merged_df = merged_df.sort_values(['page', 'ymin', 'xmin', 'label'])
file_out_name = os.path.basename(file_list[0])
merged_csv_path = output_folder + file_out_name + "_merged.csv"
# Save the merged DataFrame to a CSV file
#merged_csv = StringIO()
merged_df.to_csv(merged_csv_path, index=False)
output_files.append(merged_csv_path)
#merged_csv.seek(0) # Move to the beginning of the StringIO object
return output_files
async def get_connection_params(request: gr.Request,
output_folder_textbox:str=OUTPUT_FOLDER,
input_folder_textbox:str=INPUT_FOLDER,
session_output_folder:str=SESSION_OUTPUT_FOLDER,
textract_document_upload_input_folder:str=TEXTRACT_BULK_ANALYSIS_INPUT_SUBFOLDER,
textract_document_upload_output_folder:str=TEXTRACT_BULK_ANALYSIS_OUTPUT_SUBFOLDER,
s3_textract_document_logs_subfolder:str=TEXTRACT_JOBS_S3_LOC,
local_textract_document_logs_subfolder:str=TEXTRACT_JOBS_LOCAL_LOC):
#print("Session hash:", request.session_hash)
if CUSTOM_HEADER and CUSTOM_HEADER_VALUE:
if CUSTOM_HEADER in request.headers:
supplied_custom_header_value = request.headers[CUSTOM_HEADER]
if supplied_custom_header_value == CUSTOM_HEADER_VALUE:
print("Custom header supplied and matches CUSTOM_HEADER_VALUE")
else:
print("Custom header value does not match expected value.")
raise ValueError("Custom header value does not match expected value.")
else:
print("Custom header value not found.")
raise ValueError("Custom header value not found.")
# Get output save folder from 1 - username passed in from direct Cognito login, 2 - Cognito ID header passed through a Lambda authenticator, 3 - the session hash.
if request.username:
out_session_hash = request.username
#print("Request username found:", out_session_hash)
elif 'x-cognito-id' in request.headers:
out_session_hash = request.headers['x-cognito-id']
#print("Cognito ID found:", out_session_hash)
elif 'x-amzn-oidc-identity' in request.headers:
out_session_hash = request.headers['x-amzn-oidc-identity']
# Fetch email address using Cognito client
cognito_client = boto3.client('cognito-idp')
try:
response = cognito_client.admin_get_user(
UserPoolId=AWS_USER_POOL_ID, # Replace with your User Pool ID
Username=out_session_hash
)
email = next(attr['Value'] for attr in response['UserAttributes'] if attr['Name'] == 'email')
#print("Email address found:", email)
out_session_hash = email
except ClientError as e:
print("Error fetching user details:", e)
email = None
print("Cognito ID found:", out_session_hash)
else:
out_session_hash = request.session_hash
if session_output_folder == 'True':
output_folder = output_folder_textbox + out_session_hash + "/"
input_folder = input_folder_textbox + out_session_hash + "/"
textract_document_upload_input_folder = textract_document_upload_input_folder + "/" + out_session_hash
textract_document_upload_output_folder = textract_document_upload_output_folder + "/" + out_session_hash
s3_textract_document_logs_subfolder = s3_textract_document_logs_subfolder + "/" + out_session_hash
local_textract_document_logs_subfolder = local_textract_document_logs_subfolder + "/" + out_session_hash + "/"
else:
output_folder = output_folder_textbox
input_folder = input_folder_textbox
if not os.path.exists(output_folder): os.mkdir(output_folder)
if not os.path.exists(input_folder): os.mkdir(input_folder)
return out_session_hash, output_folder, out_session_hash, input_folder, textract_document_upload_input_folder, textract_document_upload_output_folder, s3_textract_document_logs_subfolder, local_textract_document_logs_subfolder
def clean_unicode_text(text:str):
# Step 1: Normalise unicode characters to decompose any special forms
normalized_text = unicodedata.normalize('NFKC', text)
# Step 2: Replace smart quotes and special punctuation with standard ASCII equivalents
replacements = {
'β': "'", 'β': "'", 'β': '"', 'β': '"',
'β': '-', 'β': '-', 'β¦': '...', 'β’': '*',
}
# Perform replacements
for old_char, new_char in replacements.items():
normalized_text = normalized_text.replace(old_char, new_char)
# Step 3: Optionally remove non-ASCII characters if needed
# This regex removes any remaining non-ASCII characters, if desired.
# Comment this line if you want to keep all Unicode characters.
cleaned_text = re.sub(r'[^\x00-\x7F]+', '', normalized_text)
return cleaned_text
def load_all_output_files(folder_path:str=OUTPUT_FOLDER) -> List[str]:
"""Get the file paths of all files in the given folder."""
file_paths = []
# List all files in the specified folder
for filename in os.listdir(folder_path):
# Construct full file path
full_path = os.path.join(folder_path, filename)
# Check if it's a file (not a directory)
if os.path.isfile(full_path):
file_paths.append(full_path)
return file_paths
def calculate_aws_costs(number_of_pages:str,
text_extract_method_radio:str,
handwrite_signature_checkbox:List[str],
pii_identification_method:str,
textract_output_found_checkbox:bool,
only_extract_text_radio:bool,
convert_to_gbp:bool=True,
usd_gbp_conversion_rate:float=0.76,
textract_page_cost:float=1.5/1000,
textract_signature_cost:float=2.0/1000,
comprehend_unit_cost:float=0.0001,
comprehend_size_unit_average:float=250,
average_characters_per_page:float=2000,
textract_option:str=textract_option,
no_redaction_option:str=no_redaction_option,
aws_pii_detector:str=aws_pii_detector):
'''
Calculate the approximate cost of submitting a document to AWS Textract and/or AWS Comprehend, assuming that Textract outputs do not already exist in the output folder.
- number_of_pages: The number of pages in the uploaded document(s).
- text_extract_method_radio: The method of text extraction.
- handwrite_signature_checkbox: Whether signatures are being extracted or not.
- pii_identification_method_drop: The method of personally-identifiable information removal.
- textract_output_found_checkbox: Whether existing Textract results have been found in the output folder. Assumes that results exist for all pages and files in the output folder.
- only_extract_text_radio (bool, optional): Option to only extract text from the document rather than redact.
- convert_to_gbp (bool, optional): Should suggested costs be converted from USD to GBP.
- usd_gbp_conversion_rate (float, optional): Conversion rate used for USD to GBP. Last changed 14th April 2025.
- textract_page_cost (float, optional): AWS pricing for Textract text extraction per page ($).
- textract_signature_cost (float, optional): Additional AWS cost above standard AWS Textract extraction for extracting signatures.
- comprehend_unit_cost (float, optional): Cost per 'unit' (300 character minimum) for identifying PII in text with AWS Comprehend.
- comprehend_size_unit_average (float, optional): Average size of a 'unit' of text passed to AWS Comprehend by the app through the batching process
- average_characters_per_page (float, optional): Average number of characters on an A4 page.
- textract_option (str, optional): String label for the text_extract_method_radio button for AWS Textract.
- no_redaction_option (str, optional): String label for pii_identification_method_drop for no redaction.
- aws_pii_detector (str, optional): String label for pii_identification_method_drop for AWS Comprehend.
'''
text_extraction_cost = 0
pii_identification_cost = 0
calculated_aws_cost = 0
number_of_pages = int(number_of_pages)
if textract_output_found_checkbox != True:
if text_extract_method_radio == textract_option:
text_extraction_cost = number_of_pages * textract_page_cost
if "Extract signatures" in handwrite_signature_checkbox:
text_extraction_cost += (textract_signature_cost * number_of_pages)
if pii_identification_method != no_redaction_option:
if pii_identification_method == aws_pii_detector:
comprehend_page_cost = ceil(average_characters_per_page / comprehend_size_unit_average) * comprehend_unit_cost
pii_identification_cost = comprehend_page_cost * number_of_pages
calculated_aws_cost = calculated_aws_cost + text_extraction_cost + pii_identification_cost
if convert_to_gbp == True:
calculated_aws_cost *= usd_gbp_conversion_rate
return calculated_aws_cost
def calculate_time_taken(number_of_pages:str,
text_extract_method_radio:str,
pii_identification_method:str,
textract_output_found_checkbox:bool,
only_extract_text_radio:bool,
convert_page_time:float=0.5,
textract_page_time:float=1,
comprehend_page_time:float=1,
local_text_extraction_page_time:float=0.3,
local_pii_redaction_page_time:float=0.5,
local_ocr_extraction_page_time:float=1.5,
textract_option:str=textract_option,
text_ocr_option:str=text_ocr_option,
local_ocr_option:str=tesseract_ocr_option,
no_redaction_option:str=no_redaction_option,
aws_pii_detector:str=aws_pii_detector):
'''
Calculate the approximate time to redact a document.
- number_of_pages: The number of pages in the uploaded document(s).
- text_extract_method_radio: The method of text extraction.
- pii_identification_method_drop: The method of personally-identifiable information removal.
- only_extract_text_radio (bool, optional): Option to only extract text from the document rather than redact.
- textract_page_time (float, optional): Approximate time to query AWS Textract.
- comprehend_page_time (float, optional): Approximate time to query text on a page with AWS Comprehend.
- local_text_redaction_page_time (float, optional): Approximate time to extract text on a page with the local text redaction option.
- local_pii_redaction_page_time (float, optional): Approximate time to redact text on a page with the local text redaction option.
- local_ocr_extraction_page_time (float, optional): Approximate time to extract text from a page with the local OCR redaction option.
- textract_option (str, optional): String label for the text_extract_method_radio button for AWS Textract.
- text_ocr_option (str, optional): String label for text_extract_method_radio for text extraction.
- local_ocr_option (str, optional): String label for text_extract_method_radio for local OCR.
- no_redaction_option (str, optional): String label for pii_identification_method_drop for no redaction.
- aws_pii_detector (str, optional): String label for pii_identification_method_drop for AWS Comprehend.
'''
calculated_time_taken = 0
page_conversion_time_taken = 0
page_extraction_time_taken = 0
page_redaction_time_taken = 0
number_of_pages = int(number_of_pages)
# Page preparation/conversion to image time
if (text_extract_method_radio != text_ocr_option) and (textract_output_found_checkbox != True):
page_conversion_time_taken = number_of_pages * convert_page_time
# Page text extraction time
if text_extract_method_radio == textract_option:
if textract_output_found_checkbox != True:
page_extraction_time_taken = number_of_pages * textract_page_time
elif text_extract_method_radio == local_ocr_option:
page_extraction_time_taken = number_of_pages * local_ocr_extraction_page_time
elif text_extract_method_radio == text_ocr_option:
page_conversion_time_taken = number_of_pages * local_text_extraction_page_time
# Page redaction time
if pii_identification_method != no_redaction_option:
if pii_identification_method == aws_pii_detector:
page_redaction_time_taken = number_of_pages * comprehend_page_time
else:
page_redaction_time_taken = number_of_pages * local_pii_redaction_page_time
calculated_time_taken = (page_conversion_time_taken + page_extraction_time_taken + page_redaction_time_taken)/60
return calculated_time_taken
def reset_base_dataframe(df:pd.DataFrame):
return df
def reset_ocr_base_dataframe(df:pd.DataFrame):
return df.iloc[:, [0,1]]
|