Spaces:
Sleeping
Sleeping
Minor function documentation changes. Requirements update for new Gradio and version of Gradio annotator that allows for saving preferred redaction format and to include box id
f6e6d80
from pdf2image import convert_from_path, pdfinfo_from_path | |
from PIL import Image, ImageFile | |
import os | |
import re | |
import time | |
import json | |
import numpy as np | |
import pymupdf | |
from pymupdf import Document, Page, Rect | |
import pandas as pd | |
import shutil | |
import zipfile | |
from collections import defaultdict | |
from tqdm import tqdm | |
from gradio import Progress | |
from typing import List, Optional, Dict, Any | |
from concurrent.futures import ThreadPoolExecutor, as_completed | |
from pdf2image import convert_from_path | |
from PIL import Image | |
from scipy.spatial import cKDTree | |
IMAGE_NUM_REGEX = re.compile(r'_(\d+)\.png$') | |
pd.set_option('future.no_silent_downcasting', True) | |
from tools.config import OUTPUT_FOLDER, INPUT_FOLDER, IMAGES_DPI, LOAD_TRUNCATED_IMAGES, MAX_IMAGE_PIXELS, CUSTOM_BOX_COLOUR | |
from tools.helper_functions import get_file_name_without_type, tesseract_ocr_option, text_ocr_option, textract_option, read_file | |
# from tools.aws_textract import load_and_convert_textract_json | |
image_dpi = float(IMAGES_DPI) | |
if not MAX_IMAGE_PIXELS: Image.MAX_IMAGE_PIXELS = None | |
else: Image.MAX_IMAGE_PIXELS = MAX_IMAGE_PIXELS | |
ImageFile.LOAD_TRUNCATED_IMAGES = LOAD_TRUNCATED_IMAGES.lower() == "true" | |
def is_pdf_or_image(filename): | |
""" | |
Check if a file name is a PDF or an image file. | |
Args: | |
filename (str): The name of the file. | |
Returns: | |
bool: True if the file name ends with ".pdf", ".jpg", or ".png", False otherwise. | |
""" | |
if filename.lower().endswith(".pdf") or filename.lower().endswith(".jpg") or filename.lower().endswith(".jpeg") or filename.lower().endswith(".png"): | |
output = True | |
else: | |
output = False | |
return output | |
def is_pdf(filename): | |
""" | |
Check if a file name is a PDF. | |
Args: | |
filename (str): The name of the file. | |
Returns: | |
bool: True if the file name ends with ".pdf", False otherwise. | |
""" | |
return filename.lower().endswith(".pdf") | |
## Convert pdf to image if necessary | |
def check_image_size_and_reduce(out_path:str, image:Image): | |
''' | |
Check if a given image size is above around 4.5mb, and reduce size if necessary. 5mb is the maximum possible to submit to AWS Textract. | |
''' | |
all_img_details = [] | |
page_num = 0 | |
# Check file size and resize if necessary | |
max_size = 4.5 * 1024 * 1024 # 5 MB in bytes # 5 | |
file_size = os.path.getsize(out_path) | |
width = image.width | |
height = image.height | |
# Resize images if they are too big | |
if file_size > max_size: | |
# Start with the original image size | |
print(f"Image size before {width}x{height}, original file_size: {file_size}") | |
while file_size > max_size: | |
# Reduce the size by a factor (e.g., 50% of the current size) | |
new_width = int(width * 0.5) | |
new_height = int(height * 0.5) | |
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS) | |
# Save the resized image | |
image.save(out_path, format="PNG", optimize=True) | |
# Update the file size | |
file_size = os.path.getsize(out_path) | |
print(f"Resized to {new_width}x{new_height}, new file_size: {file_size}") | |
else: | |
new_width = width | |
new_height = height | |
all_img_details.append((page_num, image, new_width, new_height)) | |
return image, new_width, new_height, all_img_details, out_path | |
def process_single_page_for_image_conversion(pdf_path:str, page_num:int, image_dpi:float=image_dpi, create_images:bool = True, input_folder: str = INPUT_FOLDER) -> tuple[int, str, float, float]: | |
out_path_placeholder = "placeholder_image_" + str(page_num) + ".png" | |
if create_images == True: | |
try: | |
# Construct the full output directory path | |
image_output_dir = os.path.join(os.getcwd(), input_folder) | |
out_path = os.path.join(image_output_dir, f"{os.path.basename(pdf_path)}_{page_num}.png") | |
os.makedirs(os.path.dirname(out_path), exist_ok=True) | |
if os.path.exists(out_path): | |
# Load existing image | |
image = Image.open(out_path) | |
elif pdf_path.lower().endswith(".pdf"): | |
# Convert PDF page to image | |
image_l = convert_from_path(pdf_path, first_page=page_num+1, last_page=page_num+1, | |
dpi=image_dpi, use_cropbox=False, use_pdftocairo=False) | |
image = image_l[0] | |
image = image.convert("L") | |
image.save(out_path, format="PNG") | |
elif pdf_path.lower().endswith(".jpg") or pdf_path.lower().endswith(".png") or pdf_path.lower().endswith(".jpeg"): | |
image = Image.open(pdf_path) | |
image.save(out_path, format="PNG") | |
width, height = image.size | |
# Check if image size too large and reduce if necessary | |
#print("Checking size of image and reducing if necessary.") | |
image, width, height, all_img_details, img_path = check_image_size_and_reduce(out_path, image) | |
return page_num, out_path, width, height | |
except Exception as e: | |
print(f"Error processing page {page_num + 1}: {e}") | |
return page_num, out_path_placeholder, pd.NA, pd.NA | |
else: | |
# print("Not creating image for page", page_num) | |
return page_num, out_path_placeholder, pd.NA, pd.NA | |
def convert_pdf_to_images(pdf_path: str, prepare_for_review:bool=False, page_min: int = 0, page_max:int = 0, create_images:bool=True, image_dpi: float = image_dpi, num_threads: int = 8, input_folder: str = INPUT_FOLDER): | |
# If preparing for review, just load the first page (not currently used) | |
if prepare_for_review == True: | |
page_count = pdfinfo_from_path(pdf_path)['Pages'] #1 | |
page_min = 0 | |
page_max = page_count | |
else: | |
page_count = pdfinfo_from_path(pdf_path)['Pages'] | |
print(f"Number of pages in PDF: {page_count}") | |
# Set page max to length of pdf if not specified | |
if page_max == 0: page_max = page_count | |
results = [] | |
with ThreadPoolExecutor(max_workers=num_threads) as executor: | |
futures = [] | |
for page_num in range(page_min, page_max): | |
futures.append(executor.submit(process_single_page_for_image_conversion, pdf_path, page_num, image_dpi, create_images=create_images, input_folder=input_folder)) | |
for future in tqdm(as_completed(futures), total=len(futures), unit="pages", desc="Converting pages to image"): | |
page_num, img_path, width, height = future.result() | |
if img_path: | |
results.append((page_num, img_path, width, height)) | |
else: | |
print(f"Page {page_num + 1} failed to process.") | |
results.append((page_num, "placeholder_image_" + str(page_num) + ".png", pd.NA, pd.NA)) | |
# Sort results by page number | |
results.sort(key=lambda x: x[0]) | |
images = [result[1] for result in results] | |
widths = [result[2] for result in results] | |
heights = [result[3] for result in results] | |
#print("PDF has been converted to images.") | |
return images, widths, heights, results | |
# Function to take in a file path, decide if it is an image or pdf, then process appropriately. | |
def process_file_for_image_creation(file_path:str, prepare_for_review:bool=False, input_folder:str=INPUT_FOLDER, create_images:bool=True): | |
# Get the file extension | |
file_extension = os.path.splitext(file_path)[1].lower() | |
# Check if the file is an image type | |
if file_extension in ['.jpg', '.jpeg', '.png']: | |
print(f"{file_path} is an image file.") | |
# Perform image processing here | |
img_object = [file_path] #[Image.open(file_path)] | |
# Load images from the file paths. Test to see if it is bigger than 4.5 mb and reduct if needed (Textract limit is 5mb) | |
image = Image.open(file_path) | |
img_object, image_sizes_width, image_sizes_height, all_img_details, img_path = check_image_size_and_reduce(file_path, image) | |
if not isinstance(image_sizes_width, list): | |
img_path = [img_path] | |
image_sizes_width = [image_sizes_width] | |
image_sizes_height = [image_sizes_height] | |
all_img_details = [all_img_details] | |
# Check if the file is a PDF | |
elif file_extension == '.pdf': | |
# print(f"{file_path} is a PDF file. Converting to image set") | |
# Run your function for processing PDF files here | |
img_path, image_sizes_width, image_sizes_height, all_img_details = convert_pdf_to_images(file_path, prepare_for_review, input_folder=input_folder, create_images=create_images) | |
else: | |
print(f"{file_path} is not an image or PDF file.") | |
img_path = [] | |
image_sizes_width = [] | |
image_sizes_height = [] | |
all_img_details = [] | |
return img_path, image_sizes_width, image_sizes_height, all_img_details | |
def get_input_file_names(file_input:List[str]): | |
''' | |
Get list of input files to report to logs. | |
''' | |
all_relevant_files = [] | |
file_name_with_extension = "" | |
full_file_name = "" | |
total_pdf_page_count = 0 | |
if isinstance(file_input, dict): | |
file_input = os.path.abspath(file_input["name"]) | |
if isinstance(file_input, str): | |
file_input_list = [file_input] | |
else: | |
file_input_list = file_input | |
for file in file_input_list: | |
if isinstance(file, str): | |
file_path = file | |
else: | |
file_path = file.name | |
file_path_without_ext = get_file_name_without_type(file_path) | |
file_extension = os.path.splitext(file_path)[1].lower() | |
# Check if the file is in acceptable types | |
if (file_extension in ['.jpg', '.jpeg', '.png', '.pdf', '.xlsx', '.csv', '.parquet']) & ("review_file" not in file_path_without_ext) & ("ocr_output" not in file_path_without_ext): | |
all_relevant_files.append(file_path_without_ext) | |
file_name_with_extension = file_path_without_ext + file_extension | |
full_file_name = file_path | |
# If PDF, get number of pages | |
if (file_extension in ['.pdf']): | |
# Open the PDF file | |
pdf_document = pymupdf.open(file_path) | |
# Get the number of pages | |
page_count = pdf_document.page_count | |
# Close the document | |
pdf_document.close() | |
else: | |
page_count = 1 | |
total_pdf_page_count += page_count | |
all_relevant_files_str = ", ".join(all_relevant_files) | |
return all_relevant_files_str, file_name_with_extension, full_file_name, all_relevant_files, total_pdf_page_count | |
def convert_color_to_range_0_1(color): | |
return tuple(component / 255 for component in color) | |
def redact_single_box(pymupdf_page:Page, pymupdf_rect:Rect, img_annotation_box:dict, custom_colours:bool=False): | |
''' | |
Commit redaction boxes to a PyMuPDF page. | |
''' | |
pymupdf_x1 = pymupdf_rect[0] | |
pymupdf_y1 = pymupdf_rect[1] | |
pymupdf_x2 = pymupdf_rect[2] | |
pymupdf_y2 = pymupdf_rect[3] | |
# Calculate area to actually remove text from the pdf (different from black box size) | |
redact_bottom_y = pymupdf_y1 + 2 | |
redact_top_y = pymupdf_y2 - 2 | |
# Calculate the middle y value and set a small height if default values are too close together | |
if (redact_top_y - redact_bottom_y) < 1: | |
middle_y = (pymupdf_y1 + pymupdf_y2) / 2 | |
redact_bottom_y = middle_y - 1 | |
redact_top_y = middle_y + 1 | |
rect_small_pixel_height = Rect(pymupdf_x1, redact_bottom_y, pymupdf_x2, redact_top_y) # Slightly smaller than outside box | |
# Add the annotation to the middle of the character line, so that it doesn't delete text from adjacent lines | |
#page.add_redact_annot(rect)#rect_small_pixel_height) | |
pymupdf_page.add_redact_annot(rect_small_pixel_height) | |
# Set up drawing a black box over the whole rect | |
shape = pymupdf_page.new_shape() | |
shape.draw_rect(pymupdf_rect) | |
if custom_colours == True: | |
if img_annotation_box["color"][0] > 1: | |
out_colour = convert_color_to_range_0_1(img_annotation_box["color"]) | |
else: | |
out_colour = img_annotation_box["color"] | |
else: | |
if CUSTOM_BOX_COLOUR == "grey": | |
out_colour = (0.5, 0.5, 0.5) | |
else: | |
out_colour = (0,0,0) | |
shape.finish(color=out_colour, fill=out_colour) # Black fill for the rectangle | |
#shape.finish(color=(0, 0, 0)) # Black fill for the rectangle | |
shape.commit() | |
def convert_pymupdf_to_image_coords(pymupdf_page:Page, x1:float, y1:float, x2:float, y2:float, image: Image=None, image_dimensions:dict={}): | |
''' | |
Converts coordinates from pymupdf format to image coordinates, | |
accounting for mediabox dimensions and offset. | |
''' | |
# Get rect dimensions | |
rect = pymupdf_page.rect | |
rect_width = rect.width | |
rect_height = rect.height | |
# Get mediabox dimensions and position | |
mediabox = pymupdf_page.mediabox | |
mediabox_width = mediabox.width | |
mediabox_height = mediabox.height | |
# Get target image dimensions | |
if image: | |
image_page_width, image_page_height = image.size | |
elif image_dimensions: | |
image_page_width, image_page_height = image_dimensions['image_width'], image_dimensions['image_height'] | |
else: | |
image_page_width, image_page_height = mediabox_width, mediabox_height | |
# Calculate scaling factors | |
image_to_mediabox_x_scale = image_page_width / mediabox_width | |
image_to_mediabox_y_scale = image_page_height / mediabox_height | |
# Adjust coordinates: | |
# Apply scaling to match image dimensions | |
x1_image = x1 * image_to_mediabox_x_scale | |
x2_image = x2 * image_to_mediabox_x_scale | |
y1_image = y1 * image_to_mediabox_y_scale | |
y2_image = y2 * image_to_mediabox_y_scale | |
# Correct for difference in rect and mediabox size | |
if mediabox_width != rect_width: | |
mediabox_to_rect_x_scale = mediabox_width / rect_width | |
mediabox_to_rect_y_scale = mediabox_height / rect_height | |
rect_to_mediabox_x_scale = rect_width / mediabox_width | |
#rect_to_mediabox_y_scale = rect_height / mediabox_height | |
mediabox_rect_x_diff = (mediabox_width - rect_width) * (image_to_mediabox_x_scale / 2) | |
mediabox_rect_y_diff = (mediabox_height - rect_height) * (image_to_mediabox_y_scale / 2) | |
x1_image -= mediabox_rect_x_diff | |
x2_image -= mediabox_rect_x_diff | |
y1_image += mediabox_rect_y_diff | |
y2_image += mediabox_rect_y_diff | |
# | |
x1_image *= mediabox_to_rect_x_scale | |
x2_image *= mediabox_to_rect_x_scale | |
y1_image *= mediabox_to_rect_y_scale | |
y2_image *= mediabox_to_rect_y_scale | |
return x1_image, y1_image, x2_image, y2_image | |
def redact_whole_pymupdf_page(rect_height:float, rect_width:float, image:Image, page:Page, custom_colours, border:float = 5, image_dimensions:dict={}): | |
# Small border to page that remains white | |
border = 5 | |
# Define the coordinates for the Rect | |
whole_page_x1, whole_page_y1 = 0 + border, 0 + border # Bottom-left corner | |
whole_page_x2, whole_page_y2 = rect_width - border, rect_height - border # Top-right corner | |
# whole_page_image_x1, whole_page_image_y1, whole_page_image_x2, whole_page_image_y2 = convert_pymupdf_to_image_coords(page, whole_page_x1, whole_page_y1, whole_page_x2, whole_page_y2, image, image_dimensions=image_dimensions) | |
# Create new image annotation element based on whole page coordinates | |
whole_page_rect = Rect(whole_page_x1, whole_page_y1, whole_page_x2, whole_page_y2) | |
# Write whole page annotation to annotation boxes | |
whole_page_img_annotation_box = {} | |
whole_page_img_annotation_box["xmin"] = whole_page_x1 #whole_page_image_x1 | |
whole_page_img_annotation_box["ymin"] = whole_page_y1 #whole_page_image_y1 | |
whole_page_img_annotation_box["xmax"] = whole_page_x2 #whole_page_image_x2 | |
whole_page_img_annotation_box["ymax"] = whole_page_y2 #whole_page_image_y2 | |
whole_page_img_annotation_box["color"] = (0,0,0) | |
whole_page_img_annotation_box["label"] = "Whole page" | |
redact_single_box(page, whole_page_rect, whole_page_img_annotation_box, custom_colours) | |
return whole_page_img_annotation_box | |
def create_page_size_objects(pymupdf_doc:Document, image_sizes_width:List[float], image_sizes_height:List[float], image_file_paths:List[str]): | |
page_sizes = [] | |
original_cropboxes = [] | |
for page_no, page in enumerate(pymupdf_doc): | |
reported_page_no = page_no + 1 | |
pymupdf_page = pymupdf_doc.load_page(page_no) | |
original_cropboxes.append(pymupdf_page.cropbox) # Save original CropBox | |
# Create a page_sizes_object. If images have been created, then image width an height come from this value. Otherwise, they are set to the cropbox size | |
out_page_image_sizes = { | |
"page":reported_page_no, | |
"mediabox_width":pymupdf_page.mediabox.width, | |
"mediabox_height": pymupdf_page.mediabox.height, | |
"cropbox_width":pymupdf_page.cropbox.width, | |
"cropbox_height":pymupdf_page.cropbox.height, | |
"original_cropbox":original_cropboxes[-1], | |
"image_path":image_file_paths[page_no]} | |
# cropbox_x_offset: Distance from MediaBox left edge to CropBox left edge | |
# This is simply the difference in their x0 coordinates. | |
out_page_image_sizes['cropbox_x_offset'] = pymupdf_page.cropbox.x0 - pymupdf_page.mediabox.x0 | |
# cropbox_y_offset_from_top: Distance from MediaBox top edge to CropBox top edge | |
# MediaBox top y = mediabox.y1 | |
# CropBox top y = cropbox.y1 | |
# The difference is mediabox.y1 - cropbox.y1 | |
out_page_image_sizes['cropbox_y_offset_from_top'] = pymupdf_page.mediabox.y1 - pymupdf_page.cropbox.y1 | |
if image_sizes_width and image_sizes_height: | |
out_page_image_sizes["image_width"] = image_sizes_width[page_no] | |
out_page_image_sizes["image_height"] = image_sizes_height[page_no] | |
page_sizes.append(out_page_image_sizes) | |
return page_sizes, original_cropboxes | |
def prepare_image_or_pdf( | |
file_paths: List[str], | |
in_redact_method: str, | |
latest_file_completed: int = 0, | |
out_message: List[str] = [], | |
first_loop_state: bool = False, | |
number_of_pages:int = 0, | |
all_annotations_object:List = [], | |
prepare_for_review:bool = False, | |
in_fully_redacted_list:List[int]=[], | |
output_folder:str=OUTPUT_FOLDER, | |
input_folder:str=INPUT_FOLDER, | |
prepare_images:bool=True, | |
page_sizes:list[dict]=[], | |
textract_output_found:bool = False, | |
progress: Progress = Progress(track_tqdm=True) | |
) -> tuple[List[str], List[str]]: | |
""" | |
Prepare and process image or text PDF files for redaction. | |
This function takes a list of file paths, processes each file based on the specified redaction method, | |
and returns the output messages and processed file paths. | |
Args: | |
file_paths (List[str]): List of file paths to process. | |
in_redact_method (str): The redaction method to use. | |
latest_file_completed (optional, int): Index of the last completed file. | |
out_message (optional, List[str]): List to store output messages. | |
first_loop_state (optional, bool): Flag indicating if this is the first iteration. | |
number_of_pages (optional, int): integer indicating the number of pages in the document | |
all_annotations_object(optional, List of annotation objects): All annotations for current document | |
prepare_for_review(optional, bool): Is this preparation step preparing pdfs and json files to review current redactions? | |
in_fully_redacted_list(optional, List of int): A list of pages to fully redact | |
output_folder (optional, str): The output folder for file save | |
prepare_images (optional, bool): A boolean indicating whether to create images for each PDF page. Defaults to True. | |
page_sizes(optional, List[dict]): A list of dicts containing information about page sizes in various formats. | |
textract_output_found (optional, bool): A boolean indicating whether textract output has already been found . Defaults to False. | |
progress (optional, Progress): Progress tracker for the operation | |
Returns: | |
tuple[List[str], List[str]]: A tuple containing the output messages and processed file paths. | |
""" | |
tic = time.perf_counter() | |
json_from_csv = False | |
original_cropboxes = [] # Store original CropBox values | |
converted_file_paths = [] | |
image_file_paths = [] | |
pymupdf_doc = [] | |
all_img_details = [] | |
review_file_csv = pd.DataFrame() | |
all_line_level_ocr_results_df = pd.DataFrame() | |
out_textract_path = "" | |
combined_out_message = "" | |
final_out_message = "" | |
if isinstance(in_fully_redacted_list, pd.DataFrame): | |
if not in_fully_redacted_list.empty: | |
in_fully_redacted_list = in_fully_redacted_list.iloc[:,0].tolist() | |
# If this is the first time around, set variables to 0/blank | |
if first_loop_state==True: | |
latest_file_completed = 0 | |
out_message = [] | |
all_annotations_object = [] | |
else: | |
print("Now redacting file", str(latest_file_completed)) | |
# If combined out message or converted_file_paths are blank, change to a list so it can be appended to | |
if isinstance(out_message, str): out_message = [out_message] | |
if not file_paths: file_paths = [] | |
if isinstance(file_paths, dict): file_paths = os.path.abspath(file_paths["name"]) | |
if isinstance(file_paths, str): file_path_number = 1 | |
else: file_path_number = len(file_paths) | |
latest_file_completed = int(latest_file_completed) | |
# If we have already redacted the last file, return the input out_message and file list to the relevant components | |
if latest_file_completed >= file_path_number: | |
print("Last file reached, returning files:", str(latest_file_completed)) | |
if isinstance(out_message, list): | |
final_out_message = '\n'.join(out_message) | |
else: | |
final_out_message = out_message | |
return final_out_message, converted_file_paths, image_file_paths, number_of_pages, number_of_pages, pymupdf_doc, all_annotations_object, review_file_csv, original_cropboxes, page_sizes, textract_output_found, all_img_details, all_line_level_ocr_results_df | |
progress(0.1, desc='Preparing file') | |
if isinstance(file_paths, str): | |
file_paths_list = [file_paths] | |
file_paths_loop = file_paths_list | |
else: | |
file_paths_list = file_paths | |
file_paths_loop = sorted(file_paths_list, key=lambda x: (os.path.splitext(x)[1] != '.pdf', os.path.splitext(x)[1] != '.json')) | |
# Loop through files to load in | |
for file in file_paths_loop: | |
converted_file_path = [] | |
image_file_path = [] | |
if isinstance(file, str): | |
file_path = file | |
else: | |
file_path = file.name | |
file_path_without_ext = get_file_name_without_type(file_path) | |
file_name_with_ext = os.path.basename(file_path) | |
if not file_path: | |
out_message = "Please select a file." | |
print(out_message) | |
raise Exception(out_message) | |
file_extension = os.path.splitext(file_path)[1].lower() | |
# If a pdf, load as a pymupdf document | |
if is_pdf(file_path): | |
pymupdf_doc = pymupdf.open(file_path) | |
pymupdf_pages = pymupdf_doc.page_count | |
converted_file_path = file_path | |
if prepare_images==True: | |
image_file_paths, image_sizes_width, image_sizes_height, all_img_details = process_file_for_image_creation(file_path, prepare_for_review, input_folder, create_images=True) | |
else: | |
image_file_paths, image_sizes_width, image_sizes_height, all_img_details = process_file_for_image_creation(file_path, prepare_for_review, input_folder, create_images=False) | |
page_sizes, original_cropboxes = create_page_size_objects(pymupdf_doc, image_sizes_width, image_sizes_height, image_file_paths) | |
#Create base version of the annotation object that doesn't have any annotations in it | |
if (not all_annotations_object) & (prepare_for_review == True): | |
all_annotations_object = [] | |
for image_path in image_file_paths: | |
annotation = {} | |
annotation["image"] = image_path | |
annotation["boxes"] = [] | |
all_annotations_object.append(annotation) | |
elif is_pdf_or_image(file_path): # Alternatively, if it's an image | |
# Check if the file is an image type and the user selected text ocr option | |
if file_extension in ['.jpg', '.jpeg', '.png'] and in_redact_method == text_ocr_option: | |
in_redact_method = tesseract_ocr_option | |
# Convert image to a pymupdf document | |
pymupdf_doc = pymupdf.open() # Create a new empty document | |
img = Image.open(file_path) # Open the image file | |
rect = pymupdf.Rect(0, 0, img.width, img.height) # Create a rectangle for the image | |
pymupdf_page = pymupdf_doc.new_page(width=img.width, height=img.height) # Add a new page | |
pymupdf_page.insert_image(rect, filename=file_path) # Insert the image into the page | |
pymupdf_page = pymupdf_doc.load_page(0) | |
file_path_str = str(file_path) | |
image_file_paths, image_sizes_width, image_sizes_height, all_img_details = process_file_for_image_creation(file_path_str, prepare_for_review, input_folder, create_images=True) | |
# Create a page_sizes_object | |
page_sizes, original_cropboxes = create_page_size_objects(pymupdf_doc, image_sizes_width, image_sizes_height, image_file_paths) | |
converted_file_path = output_folder + file_name_with_ext | |
pymupdf_doc.save(converted_file_path, garbage=4, deflate=True, clean=True) | |
elif file_extension in ['.csv']: | |
if '_review_file' in file_path_without_ext: | |
#print("file_path:", file_path) | |
review_file_csv = read_file(file_path) | |
all_annotations_object = convert_review_df_to_annotation_json(review_file_csv, image_file_paths, page_sizes) | |
json_from_csv = True | |
print("Converted CSV review file to image annotation object") | |
elif '_ocr_output' in file_path_without_ext: | |
all_line_level_ocr_results_df = read_file(file_path) | |
json_from_csv = False | |
# NEW IF STATEMENT | |
# If the file name ends with .json, check if we are loading for review. If yes, assume it is an annoations object, overwrite the current annotations object. If false, assume this is a Textract object, load in to Textract | |
if (file_extension in ['.json']) | (json_from_csv == True): | |
if (file_extension in ['.json']) & (prepare_for_review == True): | |
if isinstance(file_path, str): | |
with open(file_path, 'r') as json_file: | |
all_annotations_object = json.load(json_file) | |
else: | |
# Assuming file_path is a NamedString or similar | |
all_annotations_object = json.loads(file_path) # Use loads for string content | |
# Assume it's a textract json | |
elif (file_extension in ['.json']) and (prepare_for_review != True): | |
print("Saving Textract output") | |
# Copy it to the output folder so it can be used later. | |
output_textract_json_file_name = file_path_without_ext | |
if not file_path.endswith("_textract.json"): output_textract_json_file_name = file_path_without_ext + "_textract.json" | |
else: output_textract_json_file_name = file_path_without_ext + ".json" | |
out_textract_path = os.path.join(output_folder, output_textract_json_file_name) | |
# Use shutil to copy the file directly | |
shutil.copy2(file_path, out_textract_path) # Preserves metadata | |
textract_output_found = True | |
continue | |
# NEW IF STATEMENT | |
# If you have an annotations object from the above code | |
if all_annotations_object: | |
# Get list of page numbers | |
image_file_paths_pages = [ | |
int(re.search(r'_(\d+)\.png$', os.path.basename(s)).group(1)) | |
for s in image_file_paths | |
if re.search(r'_(\d+)\.png$', os.path.basename(s)) | |
] | |
image_file_paths_pages = [int(i) for i in image_file_paths_pages] | |
# If PDF pages have been converted to image files, replace the current image paths in the json to this. | |
if image_file_paths: | |
for i, image_file_path in enumerate(image_file_paths): | |
if i < len(all_annotations_object): | |
annotation = all_annotations_object[i] | |
else: | |
annotation = {} | |
all_annotations_object.append(annotation) | |
try: | |
if not annotation: | |
annotation = {"image":"", "boxes": []} | |
annotation_page_number = int(re.search(r'_(\d+)\.png$', image_file_path).group(1)) | |
else: | |
annotation_page_number = int(re.search(r'_(\d+)\.png$', annotation["image"]).group(1)) | |
except Exception as e: | |
print("Extracting page number from image failed due to:", e) | |
annotation_page_number = 0 | |
# Check if the annotation page number exists in the image file paths pages | |
if annotation_page_number in image_file_paths_pages: | |
# Set the correct image page directly since we know it's in the list | |
correct_image_page = annotation_page_number | |
annotation["image"] = image_file_paths[correct_image_page] | |
else: | |
print("Page", annotation_page_number, "image file not found.") | |
all_annotations_object[i] = annotation | |
if isinstance(in_fully_redacted_list, list): | |
in_fully_redacted_list = pd.DataFrame(data={"fully_redacted_pages_list":in_fully_redacted_list}) | |
# Get list of pages that are to be fully redacted and redact them | |
if not in_fully_redacted_list.empty: | |
print("Redacting whole pages") | |
for i, image in enumerate(image_file_paths): | |
page = pymupdf_doc.load_page(i) | |
rect_height = page.rect.height | |
rect_width = page.rect.width | |
whole_page_img_annotation_box = redact_whole_pymupdf_page(rect_height, rect_width, image, page, custom_colours = False, border = 5, image_dimensions={"image_width":image_sizes_width[i], "image_height":image_sizes_height[i]}) | |
all_annotations_object.append(whole_page_img_annotation_box) | |
# Write the response to a JSON file in output folder | |
out_folder = output_folder + file_path_without_ext + ".json" | |
# with open(out_folder, 'w') as json_file: | |
# json.dump(all_annotations_object, json_file, separators=(",", ":")) | |
continue | |
# If it's a zip, it could be extract from a Textract bulk API call. Check it's this, and load in json if found | |
elif file_extension in ['.zip']: | |
# Assume it's a Textract response object. Copy it to the output folder so it can be used later. | |
out_folder = os.path.join(output_folder, file_path_without_ext + "_textract.json") | |
# Use shutil to copy the file directly | |
# Open the ZIP file to check its contents | |
with zipfile.ZipFile(file_path, 'r') as zip_ref: | |
json_files = [f for f in zip_ref.namelist() if f.lower().endswith('.json')] | |
if len(json_files) == 1: # Ensure only one JSON file exists | |
json_filename = json_files[0] | |
# Extract the JSON file to the same directory as the ZIP file | |
extracted_path = os.path.join(os.path.dirname(file_path), json_filename) | |
zip_ref.extract(json_filename, os.path.dirname(file_path)) | |
# Move the extracted JSON to the intended output location | |
shutil.move(extracted_path, out_folder) | |
textract_output_found = True | |
else: | |
print(f"Skipping {file_path}: Expected 1 JSON file, found {len(json_files)}") | |
elif file_extension in ['.csv'] and "ocr_output" in file_path: | |
continue | |
# Must be something else, return with error message | |
else: | |
if in_redact_method == tesseract_ocr_option or in_redact_method == textract_option: | |
if is_pdf_or_image(file_path) == False: | |
out_message = "Please upload a PDF file or image file (JPG, PNG) for image analysis." | |
print(out_message) | |
raise Exception(out_message) | |
elif in_redact_method == text_ocr_option: | |
if is_pdf(file_path) == False: | |
out_message = "Please upload a PDF file for text analysis." | |
print(out_message) | |
raise Exception(out_message) | |
converted_file_paths.append(converted_file_path) | |
image_file_paths.extend(image_file_path) | |
toc = time.perf_counter() | |
out_time = f"File '{file_path_without_ext}' prepared in {toc - tic:0.1f} seconds." | |
print(out_time) | |
out_message.append(out_time) | |
combined_out_message = '\n'.join(out_message) | |
number_of_pages = len(page_sizes)#len(image_file_paths) | |
return combined_out_message, converted_file_paths, image_file_paths, number_of_pages, number_of_pages, pymupdf_doc, all_annotations_object, review_file_csv, original_cropboxes, page_sizes, textract_output_found, all_img_details, all_line_level_ocr_results_df | |
def convert_text_pdf_to_img_pdf(in_file_path:str, out_text_file_path:List[str], image_dpi:float=image_dpi, output_folder:str=OUTPUT_FOLDER, input_folder:str=INPUT_FOLDER): | |
file_path_without_ext = get_file_name_without_type(in_file_path) | |
out_file_paths = out_text_file_path | |
# Convert annotated text pdf back to image to give genuine redactions | |
pdf_text_image_paths, image_sizes_width, image_sizes_height, all_img_details = process_file_for_image_creation(out_file_paths[0], input_folder=input_folder) | |
out_text_image_file_path = output_folder + file_path_without_ext + "_text_redacted_as_img.pdf" | |
pdf_text_image_paths[0].save(out_text_image_file_path, "PDF" ,resolution=image_dpi, save_all=True, append_images=pdf_text_image_paths[1:]) | |
out_file_paths = [out_text_image_file_path] | |
out_message = "PDF " + file_path_without_ext + " converted to image-based file." | |
print(out_message) | |
return out_message, out_file_paths | |
def join_values_within_threshold(df1:pd.DataFrame, df2:pd.DataFrame): | |
# Threshold for matching | |
threshold = 5 | |
# Perform a cross join | |
df1['key'] = 1 | |
df2['key'] = 1 | |
merged = pd.merge(df1, df2, on='key').drop(columns=['key']) | |
# Apply conditions for all columns | |
conditions = ( | |
(abs(merged['xmin_x'] - merged['xmin_y']) <= threshold) & | |
(abs(merged['xmax_x'] - merged['xmax_y']) <= threshold) & | |
(abs(merged['ymin_x'] - merged['ymin_y']) <= threshold) & | |
(abs(merged['ymax_x'] - merged['ymax_y']) <= threshold) | |
) | |
# Filter rows that satisfy all conditions | |
filtered = merged[conditions] | |
# Drop duplicates if needed (e.g., keep only the first match for each row in df1) | |
result = filtered.drop_duplicates(subset=['xmin_x', 'xmax_x', 'ymin_x', 'ymax_x']) | |
# Merge back into the original DataFrame (if necessary) | |
final_df = pd.merge(df1, result, left_on=['xmin', 'xmax', 'ymin', 'ymax'], right_on=['xmin_x', 'xmax_x', 'ymin_x', 'ymax_x'], how='left') | |
# Clean up extra columns | |
final_df = final_df.drop(columns=['key']) | |
def remove_duplicate_images_with_blank_boxes(data: List[dict]) -> List[dict]: | |
''' | |
Remove items from the annotator object where the same page exists twice. | |
''' | |
# Group items by 'image' | |
image_groups = defaultdict(list) | |
for item in data: | |
image_groups[item['image']].append(item) | |
# Process each group to prioritize items with non-empty boxes | |
result = [] | |
for image, items in image_groups.items(): | |
# Filter items with non-empty boxes | |
non_empty_boxes = [item for item in items if item.get('boxes')] | |
# Remove 'text' elements from boxes | |
for item in non_empty_boxes: | |
if 'boxes' in item: | |
item['boxes'] = [{k: v for k, v in box.items() if k != 'text'} for box in item['boxes']] | |
if non_empty_boxes: | |
# Keep the first entry with non-empty boxes | |
result.append(non_empty_boxes[0]) | |
else: | |
# If all items have empty or missing boxes, keep the first item | |
result.append(items[0]) | |
return result | |
def divide_coordinates_by_page_sizes(review_file_df:pd.DataFrame, page_sizes_df:pd.DataFrame, xmin="xmin", xmax="xmax", ymin="ymin", ymax="ymax"): | |
'''Convert data to same coordinate system. If all coordinates all greater than one, this is a absolute image coordinates - change back to relative coordinates.''' | |
review_file_df_out = review_file_df | |
if xmin in review_file_df.columns and not review_file_df.empty: | |
review_file_df_orig = review_file_df.copy().loc[(review_file_df[xmin] <= 1) & (review_file_df[xmax] <= 1) & (review_file_df[ymin] <= 1) & (review_file_df[ymax] <= 1),:] | |
review_file_df = review_file_df.loc[(review_file_df[xmin] > 1) & (review_file_df[xmax] > 1) & (review_file_df[ymin] > 1) & (review_file_df[ymax] > 1),:] | |
review_file_df.loc[:, "page"] = pd.to_numeric(review_file_df["page"], errors="coerce") | |
review_file_df_div = review_file_df | |
if "image_width" not in review_file_df_div.columns and not page_sizes_df.empty: | |
page_sizes_df["image_width"] = page_sizes_df["image_width"].replace("<NA>", pd.NA) | |
page_sizes_df["image_height"] = page_sizes_df["image_height"].replace("<NA>", pd.NA) | |
review_file_df_div = review_file_df_div.merge(page_sizes_df[["page", "image_width", "image_height", "mediabox_width", "mediabox_height"]], on="page", how="left") | |
if "image_width" in review_file_df_div.columns: | |
if review_file_df_div["image_width"].isna().all(): # Check if all are NaN values. If so, assume we only have mediabox coordinates available | |
review_file_df_div["image_width"] = review_file_df_div["image_width"].fillna(review_file_df_div["mediabox_width"]).infer_objects() | |
review_file_df_div["image_height"] = review_file_df_div["image_height"].fillna(review_file_df_div["mediabox_height"]).infer_objects() | |
convert_type_cols = ["image_width", "image_height", xmin, xmax, ymin, ymax] | |
review_file_df_div[convert_type_cols] = review_file_df_div[convert_type_cols].apply(pd.to_numeric, errors="coerce") | |
review_file_df_div[xmin] = review_file_df_div[xmin] / review_file_df_div["image_width"] | |
review_file_df_div[xmax] = review_file_df_div[xmax] / review_file_df_div["image_width"] | |
review_file_df_div[ymin] = review_file_df_div[ymin] / review_file_df_div["image_height"] | |
review_file_df_div[ymax] = review_file_df_div[ymax] / review_file_df_div["image_height"] | |
# Concatenate the original and modified DataFrames | |
dfs_to_concat = [df for df in [review_file_df_orig, review_file_df_div] if not df.empty] | |
if dfs_to_concat: # Ensure there's at least one non-empty DataFrame | |
review_file_df_out = pd.concat(dfs_to_concat) | |
else: | |
review_file_df_out = review_file_df # Return an original DataFrame instead of raising an error | |
# Only sort if the DataFrame is not empty and contains the required columns | |
required_sort_columns = {"page", xmin, ymin} | |
if not review_file_df_out.empty and required_sort_columns.issubset(review_file_df_out.columns): | |
review_file_df_out.sort_values(["page", ymin, xmin], inplace=True) | |
review_file_df_out.drop(["image_width", "image_height", "mediabox_width", "mediabox_height"], axis=1, errors="ignore") | |
return review_file_df_out | |
def multiply_coordinates_by_page_sizes(review_file_df: pd.DataFrame, page_sizes_df: pd.DataFrame, xmin="xmin", xmax="xmax", ymin="ymin", ymax="ymax"): | |
if xmin in review_file_df.columns and not review_file_df.empty: | |
# Separate absolute vs relative coordinates | |
review_file_df_orig = review_file_df.loc[ | |
(review_file_df[xmin] > 1) & (review_file_df[xmax] > 1) & | |
(review_file_df[ymin] > 1) & (review_file_df[ymax] > 1), :].copy() | |
review_file_df = review_file_df.loc[ | |
(review_file_df[xmin] <= 1) & (review_file_df[xmax] <= 1) & | |
(review_file_df[ymin] <= 1) & (review_file_df[ymax] <= 1), :].copy() | |
if review_file_df.empty: | |
return review_file_df_orig # If nothing is left, return the original absolute-coordinates DataFrame | |
review_file_df.loc[:, "page"] = pd.to_numeric(review_file_df["page"], errors="coerce") | |
if "image_width" not in review_file_df.columns and not page_sizes_df.empty: | |
page_sizes_df[['image_width', 'image_height']] = page_sizes_df[['image_width','image_height']].replace("<NA>", pd.NA) # Ensure proper NA handling | |
review_file_df = review_file_df.merge(page_sizes_df, on="page", how="left") | |
if "image_width" in review_file_df.columns: | |
# Split into rows with/without image size info | |
review_file_df_not_na = review_file_df.loc[review_file_df["image_width"].notna()].copy() | |
review_file_df_na = review_file_df.loc[review_file_df["image_width"].isna()].copy() | |
if not review_file_df_not_na.empty: | |
convert_type_cols = ["image_width", "image_height", xmin, xmax, ymin, ymax] | |
review_file_df_not_na[convert_type_cols] = review_file_df_not_na[convert_type_cols].apply(pd.to_numeric, errors="coerce") | |
# Multiply coordinates by image sizes | |
review_file_df_not_na[xmin] *= review_file_df_not_na["image_width"] | |
review_file_df_not_na[xmax] *= review_file_df_not_na["image_width"] | |
review_file_df_not_na[ymin] *= review_file_df_not_na["image_height"] | |
review_file_df_not_na[ymax] *= review_file_df_not_na["image_height"] | |
# Concatenate the modified and unmodified data | |
review_file_df = pd.concat([df for df in [review_file_df_not_na, review_file_df_na] if not df.empty]) | |
# Merge with the original absolute-coordinates DataFrame | |
dfs_to_concat = [df for df in [review_file_df_orig, review_file_df] if not df.empty] | |
if dfs_to_concat: # Ensure there's at least one non-empty DataFrame | |
review_file_df = pd.concat(dfs_to_concat) | |
else: | |
review_file_df = pd.DataFrame() # Return an empty DataFrame instead of raising an error | |
# Only sort if the DataFrame is not empty and contains the required columns | |
required_sort_columns = {"page", "xmin", "ymin"} | |
if not review_file_df.empty and required_sort_columns.issubset(review_file_df.columns): | |
review_file_df.sort_values(["page", "xmin", "ymin"], inplace=True) | |
return review_file_df | |
def do_proximity_match_by_page_for_text(df1:pd.DataFrame, df2:pd.DataFrame): | |
''' | |
Match text from one dataframe to another based on proximity matching of coordinates page by page. | |
''' | |
if not 'text' in df2.columns: df2['text'] = '' | |
if not 'text' in df1.columns: df1['text'] = '' | |
# Create a unique key based on coordinates and label for exact merge | |
merge_keys = ['xmin', 'ymin', 'xmax', 'ymax', 'label', 'page'] | |
df1['key'] = df1[merge_keys].astype(str).agg('_'.join, axis=1) | |
df2['key'] = df2[merge_keys].astype(str).agg('_'.join, axis=1) | |
# Attempt exact merge first | |
merged_df = df1.merge(df2[['key', 'text']], on='key', how='left', suffixes=('', '_duplicate')) | |
# If a match is found, keep that text; otherwise, keep the original df1 text | |
merged_df['text'] = np.where( | |
merged_df['text'].isna() | (merged_df['text'] == ''), | |
merged_df.pop('text_duplicate'), | |
merged_df['text'] | |
) | |
# Define tolerance for proximity matching | |
tolerance = 0.02 | |
# Precompute KDTree for each page in df2 | |
page_trees = {} | |
for page in df2['page'].unique(): | |
df2_page = df2[df2['page'] == page] | |
coords = df2_page[['xmin', 'ymin', 'xmax', 'ymax']].values | |
if np.all(np.isfinite(coords)) and len(coords) > 0: | |
page_trees[page] = (cKDTree(coords), df2_page) | |
# Perform proximity matching | |
for i, row in df1.iterrows(): | |
page_number = row['page'] | |
if page_number in page_trees: | |
tree, df2_page = page_trees[page_number] | |
# Query KDTree for nearest neighbor | |
dist, idx = tree.query([row[['xmin', 'ymin', 'xmax', 'ymax']].values], distance_upper_bound=tolerance) | |
if dist[0] < tolerance and idx[0] < len(df2_page): | |
merged_df.at[i, 'text'] = df2_page.iloc[idx[0]]['text'] | |
# Drop the temporary key column | |
merged_df.drop(columns=['key'], inplace=True) | |
return merged_df | |
def do_proximity_match_all_pages_for_text(df1:pd.DataFrame, df2:pd.DataFrame, threshold:float=0.03): | |
''' | |
Match text from one dataframe to another based on proximity matching of coordinates across all pages. | |
''' | |
if not 'text' in df2.columns: df2['text'] = '' | |
if not 'text' in df1.columns: df1['text'] = '' | |
# Create a unique key based on coordinates and label for exact merge | |
merge_keys = ['xmin', 'ymin', 'xmax', 'ymax', 'label', 'page'] | |
df1['key'] = df1[merge_keys].astype(str).agg('_'.join, axis=1) | |
df2['key'] = df2[merge_keys].astype(str).agg('_'.join, axis=1) | |
# Attempt exact merge first, renaming df2['text'] to avoid suffixes | |
merged_df = df1.merge(df2[['key', 'text']], on='key', how='left', suffixes=('', '_duplicate')) | |
# If a match is found, keep that text; otherwise, keep the original df1 text | |
merged_df['text'] = np.where( | |
merged_df['text'].isna() | (merged_df['text'] == ''), | |
merged_df.pop('text_duplicate'), | |
merged_df['text'] | |
) | |
# Handle missing matches using a proximity-based approach | |
# Convert coordinates to numpy arrays for KDTree lookup | |
query_coords = np.array(df1[['xmin', 'ymin', 'xmax', 'ymax']].values, dtype=float) | |
# Check for NaN or infinite values in query_coords and filter them out | |
finite_mask = np.isfinite(query_coords).all(axis=1) | |
if not finite_mask.all(): | |
#print("Warning: query_coords contains non-finite values. Filtering out non-finite entries.") | |
query_coords = query_coords[finite_mask] # Filter out rows with NaN or infinite values | |
else: | |
pass | |
# Proceed only if query_coords is not empty | |
if query_coords.size > 0: | |
# Ensure df2 is filtered for finite values before creating the KDTree | |
finite_mask_df2 = np.isfinite(df2[['xmin', 'ymin', 'xmax', 'ymax']].values).all(axis=1) | |
df2_finite = df2[finite_mask_df2] | |
# Create the KDTree with the filtered data | |
tree = cKDTree(df2_finite[['xmin', 'ymin', 'xmax', 'ymax']].values) | |
# Find nearest neighbors within a reasonable tolerance (e.g., 1% of page) | |
tolerance = threshold | |
distances, indices = tree.query(query_coords, distance_upper_bound=tolerance) | |
# Assign text values where matches are found | |
for i, (dist, idx) in enumerate(zip(distances, indices)): | |
if dist < tolerance and idx < len(df2_finite): | |
merged_df.at[i, 'text'] = df2_finite.iloc[idx]['text'] | |
# Drop the temporary key column | |
merged_df.drop(columns=['key'], inplace=True) | |
return merged_df | |
def _extract_page_number(image_path: Any) -> int: | |
"""Helper function to safely extract page number.""" | |
if not isinstance(image_path, str): | |
return 1 | |
match = IMAGE_NUM_REGEX.search(image_path) | |
if match: | |
try: | |
return int(match.group(1)) + 1 | |
except (ValueError, TypeError): | |
return 1 | |
return 1 | |
def convert_annotation_data_to_dataframe(all_annotations: List[Dict[str, Any]]): | |
''' | |
Convert annotation list to DataFrame using Pandas explode and json_normalize. | |
''' | |
if not all_annotations: | |
# Return an empty DataFrame with the expected schema if input is empty | |
return pd.DataFrame(columns=["image", "page", "xmin", "xmax", "ymin", "ymax", "text"]) | |
# 1. Create initial DataFrame from the list of annotations | |
# Use list comprehensions with .get() for robustness | |
df = pd.DataFrame({ | |
"image": [anno.get("image") for anno in all_annotations], | |
# Ensure 'boxes' defaults to an empty list if missing or None | |
"boxes": [anno.get("boxes") if isinstance(anno.get("boxes"), list) else [] for anno in all_annotations] | |
}) | |
# 2. Calculate the page number using the helper function | |
df['page'] = df['image'].apply(_extract_page_number) | |
# 3. Handle empty 'boxes' lists *before* exploding. | |
# Explode removes rows where the list is empty. We want to keep them | |
# as rows with NA values. Replace empty lists with a list containing | |
# a single placeholder dictionary. | |
placeholder_box = {"xmin": pd.NA, "xmax": pd.NA, "ymin": pd.NA, "ymax": pd.NA, "text": pd.NA} | |
df['boxes'] = df['boxes'].apply(lambda x: x if x else [placeholder_box]) | |
# 4. Explode the 'boxes' column. Each item in the list becomes a new row. | |
df_exploded = df.explode('boxes', ignore_index=True) | |
# 5. Normalize the 'boxes' column (which now contains dictionaries or the placeholder) | |
# This turns the dictionaries into separate columns. | |
# Check for NaNs or non-dict items just in case, though placeholder handles most cases. | |
mask = df_exploded['boxes'].notna() & df_exploded['boxes'].apply(isinstance, args=(dict,)) | |
normalized_boxes = pd.json_normalize(df_exploded.loc[mask, 'boxes']) | |
# 6. Combine the base data (image, page) with the normalized box data | |
# Use the index of the exploded frame (where mask is True) to ensure correct alignment | |
final_df = df_exploded.loc[mask, ['image', 'page']].reset_index(drop=True).join(normalized_boxes) | |
# --- Optional: Handle rows that might have had non-dict items in 'boxes' --- | |
# If there were rows filtered out by 'mask', you might want to add them back | |
# with NA values for box columns. However, the placeholder strategy usually | |
# prevents this from being necessary. | |
# 7. Ensure essential columns exist and set column order | |
essential_box_cols = ["xmin", "xmax", "ymin", "ymax", "text"] | |
for col in essential_box_cols: | |
if col not in final_df.columns: | |
final_df[col] = pd.NA # Add column with NA if it wasn't present in any box | |
base_cols = ["image", "page"] | |
extra_box_cols = [col for col in final_df.columns if col not in base_cols and col not in essential_box_cols] | |
final_col_order = base_cols + essential_box_cols + sorted(extra_box_cols) | |
# Reindex to ensure consistent column order and presence of essential columns | |
# Using fill_value=pd.NA isn't strictly needed here as we added missing columns above, | |
# but it's good practice if columns could be missing for other reasons. | |
final_df = final_df.reindex(columns=final_col_order, fill_value=pd.NA) | |
return final_df | |
# def convert_annotation_data_to_dataframe(all_annotations:List[dict]): | |
# ''' | |
# Convert an annotation list of dictionaries to a dataframe with all boxes on a separate row | |
# ''' | |
# # Flatten the data | |
# flattened_annotation_data = [] | |
# for annotation in all_annotations: | |
# image_path = annotation["image"] | |
# if image_path: | |
# match = re.search(r'_(\d+)\.png$', image_path) | |
# if match: | |
# number = match.group(1) | |
# reported_number = int(number) + 1 | |
# else: | |
# reported_number = 1 | |
# else: | |
# reported_number = 1 | |
# # Check if 'boxes' is in the annotation, if not, add an empty list | |
# if 'boxes' not in annotation: | |
# annotation['boxes'] = [] | |
# # If boxes are empty, create a row with blank values for xmin, xmax, ymin, ymax | |
# if not annotation["boxes"]: | |
# data_to_add = {"image": image_path, "page": reported_number, "xmin": pd.NA, "xmax": pd.NA, "ymin": pd.NA, "ymax": pd.NA} | |
# flattened_annotation_data.append(data_to_add) | |
# else: | |
# for box in annotation["boxes"]: | |
# if 'xmin' not in box: | |
# data_to_add = {"image": image_path, "page": reported_number, "xmin": pd.NA, 'xmax': pd.NA, 'ymin': pd.NA, 'ymax': pd.NA} | |
# elif 'text' not in box: | |
# data_to_add = {"image": image_path, "page": reported_number, **box} | |
# else: | |
# data_to_add = {"image": image_path, "page": reported_number, "text": box['text'], **box} | |
# flattened_annotation_data.append(data_to_add) | |
# # Convert to a DataFrame | |
# review_file_df = pd.DataFrame(flattened_annotation_data) | |
# return review_file_df | |
# def create_annotation_dicts_from_annotation_df(all_image_annotations_df:pd.DataFrame, page_sizes:List[dict]): | |
# ''' | |
# From an annotation object as a dataframe, convert back to a list of dictionaries that can be used in the Gradio Image Annotator component | |
# ''' | |
# result = [] | |
# # Ensure that every page has an entry in the resulting list of dicts | |
# for image_path in page_sizes: | |
# annotation = {} | |
# annotation["image"] = image_path["image_path"] | |
# annotation["boxes"] = [] | |
# result.append(annotation) | |
# # Then add in all the filled in data | |
# for image, group in all_image_annotations_df.groupby('image'): | |
# boxes = group[['xmin', 'ymin', 'xmax', 'ymax', 'color', 'label']].to_dict(orient='records') | |
# result.append({'image': image, 'boxes': boxes}) | |
# return result | |
def create_annotation_dicts_from_annotation_df( | |
all_image_annotations_df: pd.DataFrame, | |
page_sizes: List[Dict[str, Any]] | |
) -> List[Dict[str, Any]]: | |
''' | |
Convert annotation DataFrame back to list of dicts using dictionary lookup. | |
Ensures all images from page_sizes are present without duplicates. | |
''' | |
# 1. Create a dictionary keyed by image path for efficient lookup & update | |
# Initialize with all images from page_sizes. Use .get for safety. | |
image_dict: Dict[str, Dict[str, Any]] = {} | |
for item in page_sizes: | |
image_path = item.get("image_path") | |
if image_path: # Only process if image_path exists and is not None/empty | |
image_dict[image_path] = {"image": image_path, "boxes": []} | |
# Check if the DataFrame is empty or lacks necessary columns | |
if all_image_annotations_df.empty or 'image' not in all_image_annotations_df.columns: | |
#print("Warning: Annotation DataFrame is empty or missing 'image' column.") | |
return list(image_dict.values()) # Return based on page_sizes only | |
# 2. Define columns to extract for boxes and check availability | |
# Make sure these columns actually exist in the DataFrame | |
box_cols = ['xmin', 'ymin', 'xmax', 'ymax', 'color', 'label'] | |
available_cols = [col for col in box_cols if col in all_image_annotations_df.columns] | |
if not available_cols: | |
print(f"Warning: None of the expected box columns ({box_cols}) found in DataFrame.") | |
return list(image_dict.values()) # Return based on page_sizes only | |
# 3. Group the DataFrame by image and update the dictionary | |
# Drop rows where essential coordinates might be NA (adjust if NA is meaningful) | |
coord_cols = ['xmin', 'ymin', 'xmax', 'ymax'] | |
valid_box_df = all_image_annotations_df.dropna( | |
subset=[col for col in coord_cols if col in available_cols] | |
).copy() # Use .copy() to avoid SettingWithCopyWarning if modifying later | |
# Check if any valid boxes remain after dropping NAs | |
if valid_box_df.empty: | |
print("Warning: No valid annotation rows found in DataFrame after dropping NA coordinates.") | |
return list(image_dict.values()) | |
# Process groups | |
try: | |
for image_path, group in valid_box_df.groupby('image', observed=True, sort=False): | |
# Check if this image path exists in our target dictionary (from page_sizes) | |
if image_path in image_dict: | |
# Convert the relevant columns of the group to a list of dicts | |
# Using only columns that are actually available | |
boxes = group[available_cols].to_dict(orient='records') | |
# Update the 'boxes' list in the dictionary | |
image_dict[image_path]['boxes'] = boxes | |
# Else: Image found in DataFrame but not required by page_sizes; ignore it. | |
except KeyError: | |
# This shouldn't happen due to the 'image' column check above, but handle defensively | |
print("Error: Issue grouping DataFrame by 'image'.") | |
return list(image_dict.values()) | |
# 4. Convert the dictionary values back into the final list format | |
result = list(image_dict.values()) | |
return result | |
# import pandas as pd | |
# from typing import List, Dict, Any | |
# def create_annotation_dicts_from_annotation_df( | |
# all_image_annotations_df: pd.DataFrame, | |
# page_sizes: List[Dict[str, Any]] | |
# ) -> List[Dict[str, Any]]: | |
# ''' | |
# Convert annotation DataFrame back to list of dicts using Pandas merge. | |
# Ensures all images from page_sizes are present without duplicates. | |
# ''' | |
# # 1. Create a DataFrame containing all required image paths from page_sizes | |
# if not page_sizes: | |
# return [] | |
# all_image_paths = [item.get("image_path") for item in page_sizes if item.get("image_path")] | |
# if not all_image_paths: | |
# return [] | |
# # Use unique paths | |
# pages_df = pd.DataFrame({'image': list(set(all_image_paths))}) | |
# # Check if the DataFrame is empty or lacks necessary columns | |
# if all_image_annotations_df.empty or 'image' not in all_image_annotations_df.columns: | |
# print("Warning: Annotation DataFrame is empty or missing 'image' column.") | |
# # Add empty boxes column and return | |
# pages_df['boxes'] = [[] for _ in range(len(pages_df))] | |
# return pages_df.to_dict(orient='records') | |
# # 2. Define columns to extract and check availability | |
# box_cols = ['xmin', 'ymin', 'xmax', 'ymax', 'color', 'label'] | |
# available_cols = [col for col in box_cols if col in all_image_annotations_df.columns] | |
# if not available_cols: | |
# print(f"Warning: None of the expected box columns ({box_cols}) found in DataFrame.") | |
# pages_df['boxes'] = [[] for _ in range(len(pages_df))] | |
# return pages_df.to_dict(orient='records') | |
# # 3. Prepare the annotation data: drop invalid rows and aggregate boxes | |
# coord_cols = ['xmin', 'ymin', 'xmax', 'ymax'] | |
# valid_box_df = all_image_annotations_df.dropna( | |
# subset=[col for col in coord_cols if col in available_cols] | |
# ).copy() # Use .copy() | |
# if valid_box_df.empty: | |
# print("Warning: No valid annotation rows found after dropping NA coordinates.") | |
# pages_df['boxes'] = [[] for _ in range(len(pages_df))] | |
# return pages_df.to_dict(orient='records') | |
# # Aggregate boxes into lists of dictionaries per image | |
# def aggregate_boxes(group): | |
# return group[available_cols].to_dict(orient='records') | |
# # Group by image and apply the aggregation | |
# grouped_boxes = valid_box_df.groupby('image', observed=True, sort=False).apply(aggregate_boxes).reset_index(name='boxes') | |
# # 4. Perform a left merge: keep all images from pages_df, add boxes where they exist | |
# merged_df = pd.merge(pages_df, grouped_boxes, on='image', how='left') | |
# # 5. Fill NaN in 'boxes' column (for images with no annotations) with empty lists | |
# # Ensure the column exists before trying to fillna | |
# if 'boxes' in merged_df.columns: | |
# # Use apply with a lambda for robust filling of NAs or potential None values | |
# merged_df['boxes'] = merged_df['boxes'].apply(lambda x: [] if pd.isna(x) else x) | |
# else: | |
# # Should not happen with left merge, but handle defensively | |
# merged_df['boxes'] = [[] for _ in range(len(merged_df))] | |
# # 6. Convert the final DataFrame to the list of dictionaries format | |
# result = merged_df.to_dict(orient='records') | |
# return result | |
def convert_annotation_json_to_review_df(all_annotations:List[dict], | |
redaction_decision_output:pd.DataFrame=pd.DataFrame(), | |
page_sizes:pd.DataFrame=pd.DataFrame(), | |
do_proximity_match:bool=True) -> pd.DataFrame: | |
''' | |
Convert the annotation json data to a dataframe format. Add on any text from the initial review_file dataframe by joining on pages/co-ordinates (if option selected). | |
''' | |
review_file_df = convert_annotation_data_to_dataframe(all_annotations) | |
if page_sizes: | |
page_sizes_df = pd.DataFrame(page_sizes) | |
page_sizes_df[["page"]] = page_sizes_df[["page"]].apply(pd.to_numeric, errors="coerce") | |
review_file_df = divide_coordinates_by_page_sizes(review_file_df, page_sizes_df) | |
redaction_decision_output = divide_coordinates_by_page_sizes(redaction_decision_output, page_sizes_df) | |
# Join on additional text data from decision output results if included, if text not already there | |
if not redaction_decision_output.empty and not review_file_df.empty and do_proximity_match == True: | |
# Match text to review file to match on text | |
review_file_df = do_proximity_match_all_pages_for_text(df1 = review_file_df.copy(), df2 = redaction_decision_output.copy()) | |
# Ensure required columns exist, filling with blank if they don't | |
check_columns = ["image", "page", "label", "color", "xmin", "ymin", "xmax", "ymax", "text"] | |
for col in check_columns: | |
if col not in review_file_df.columns: | |
review_file_df[col] = '' | |
if not review_file_df.empty: | |
review_file_df = review_file_df[check_columns] | |
else: | |
review_file_df = pd.DataFrame(columns=check_columns) | |
# If colours are saved as list, convert to tuple | |
review_file_df.loc[:,"color"] = review_file_df.loc[:,"color"].apply(lambda x: tuple(x) if isinstance(x, list) else x) | |
review_file_df = review_file_df.sort_values(['page', 'ymin', 'xmin', 'label']) | |
return review_file_df | |
def convert_review_df_to_annotation_json(review_file_df:pd.DataFrame, | |
image_paths:List[Image.Image], | |
page_sizes:List[dict]=[]) -> List[dict]: | |
''' | |
Convert a review csv to a json file for use by the Gradio Annotation object. | |
''' | |
# Make sure all relevant cols are float | |
float_cols = ["page", "xmin", "xmax", "ymin", "ymax"] | |
for col in float_cols: | |
review_file_df.loc[:, col] = pd.to_numeric(review_file_df.loc[:, col], errors='coerce') | |
# Convert relative co-ordinates into image coordinates for the image annotation output object | |
if page_sizes: | |
page_sizes_df = pd.DataFrame(page_sizes) | |
page_sizes_df[["page"]] = page_sizes_df[["page"]].apply(pd.to_numeric, errors="coerce") | |
review_file_df = multiply_coordinates_by_page_sizes(review_file_df, page_sizes_df) | |
# Keep only necessary columns | |
review_file_df = review_file_df[["image", "page", "label", "color", "xmin", "ymin", "xmax", "ymax"]].drop_duplicates(subset=["image", "page", "xmin", "ymin", "xmax", "ymax", "label"]) | |
# If colours are saved as list, convert to tuple | |
review_file_df.loc[:, "color"] = review_file_df.loc[:,"color"].apply(lambda x: tuple(x) if isinstance(x, list) else x) | |
# Group the DataFrame by the 'image' column | |
grouped_csv_pages = review_file_df.groupby('page') | |
# Create a list to hold the JSON data | |
json_data = [] | |
for page_no, pdf_image_path in enumerate(page_sizes_df["image_path"]): | |
reported_page_number = int(page_no + 1) | |
if reported_page_number in review_file_df["page"].values: | |
# Convert each relevant group to a list of box dictionaries | |
selected_csv_pages = grouped_csv_pages.get_group(reported_page_number) | |
annotation_boxes = selected_csv_pages.drop(columns=['image', 'page']).to_dict(orient='records') | |
annotation = { | |
"image": pdf_image_path, | |
"boxes": annotation_boxes | |
} | |
else: | |
annotation = {} | |
annotation["image"] = pdf_image_path | |
annotation["boxes"] = [] | |
# Append the structured data to the json_data list | |
json_data.append(annotation) | |
return json_data |