document_redaction / tools /load_spacy_model_custom_recognisers.py
seanpedrickcase's picture
Major update. General code revision. Improved config variables. Dataframe based review frame now includes text, items can be searched and excluded. Costs now estimated. Option for adding cost codes added. Option to extract text only.
0ea8b9e
from typing import List
from presidio_analyzer import AnalyzerEngine, PatternRecognizer, EntityRecognizer, Pattern, RecognizerResult
from presidio_analyzer.nlp_engine import SpacyNlpEngine, NlpArtifacts
import spacy
from spacy.matcher import Matcher, PhraseMatcher
from spaczz.matcher import FuzzyMatcher
spacy.prefer_gpu()
from spacy.cli.download import download
import Levenshtein
import re
import gradio as gr
model_name = "en_core_web_lg" #"en_core_web_sm" #"en_core_web_trf"
score_threshold = 0.001
custom_entities = ["TITLES", "UKPOSTCODE", "STREETNAME", "CUSTOM"]
#Load spacy model
try:
import en_core_web_lg #en_core_web_sm
nlp = en_core_web_lg.load() #en_core_web_sm.load()
print("Successfully imported spaCy model")
except:
download(model_name)
nlp = spacy.load(model_name)
print("Successfully downloaded and imported spaCy model", model_name)
# #### Custom recognisers
def custom_word_list_recogniser(custom_list:List[str]=[]):
# Create regex pattern, handling quotes carefully
quote_str = '"'
replace_str = '(?:"|"|")'
custom_regex = '|'.join(
rf'(?<!\w){re.escape(term.strip()).replace(quote_str, replace_str)}(?!\w)'
for term in custom_list
)
#print(custom_regex)
custom_pattern = Pattern(name="custom_pattern", regex=custom_regex, score = 1)
custom_recogniser = PatternRecognizer(supported_entity="CUSTOM", name="CUSTOM", patterns = [custom_pattern],
global_regex_flags=re.DOTALL | re.MULTILINE | re.IGNORECASE)
return custom_recogniser
# Initialise custom recogniser that will be overwritten later
custom_recogniser = custom_word_list_recogniser()
# Custom title recogniser
titles_list = ["Sir", "Ma'am", "Madam", "Mr", "Mr.", "Mrs", "Mrs.", "Ms", "Ms.", "Miss", "Dr", "Dr.", "Professor"]
titles_regex = '\\b' + '\\b|\\b'.join(rf"{re.escape(title)}" for title in titles_list) + '\\b'
titles_pattern = Pattern(name="titles_pattern",regex=titles_regex, score = 1)
titles_recogniser = PatternRecognizer(supported_entity="TITLES", name="TITLES", patterns = [titles_pattern],
global_regex_flags=re.DOTALL | re.MULTILINE)
# %%
# Custom postcode recogniser
# Define the regex pattern in a Presidio `Pattern` object:
ukpostcode_pattern = Pattern(
name="ukpostcode_pattern",
regex=r"\b([A-Z]{1,2}\d[A-Z\d]? ?\d[A-Z]{2}|GIR ?0AA)\b",
score=1
)
# Define the recognizer with one or more patterns
ukpostcode_recogniser = PatternRecognizer(supported_entity="UKPOSTCODE", name = "UKPOSTCODE", patterns = [ukpostcode_pattern])
### Street name
def extract_street_name(text:str) -> str:
"""
Extracts the street name and preceding word (that should contain at least one number) from the given text.
"""
street_types = [
'Street', 'St', 'Boulevard', 'Blvd', 'Highway', 'Hwy', 'Broadway', 'Freeway',
'Causeway', 'Cswy', 'Expressway', 'Way', 'Walk', 'Lane', 'Ln', 'Road', 'Rd',
'Avenue', 'Ave', 'Circle', 'Cir', 'Cove', 'Cv', 'Drive', 'Dr', 'Parkway', 'Pkwy',
'Park', 'Court', 'Ct', 'Square', 'Sq', 'Loop', 'Place', 'Pl', 'Parade', 'Estate',
'Alley', 'Arcade', 'Avenue', 'Ave', 'Bay', 'Bend', 'Brae', 'Byway', 'Close', 'Corner', 'Cove',
'Crescent', 'Cres', 'Cul-de-sac', 'Dell', 'Drive', 'Dr', 'Esplanade', 'Glen', 'Green', 'Grove', 'Heights', 'Hts',
'Mews', 'Parade', 'Path', 'Piazza', 'Promenade', 'Quay', 'Ridge', 'Row', 'Terrace', 'Ter', 'Track', 'Trail', 'View', 'Villas',
'Marsh', 'Embankment', 'Cut', 'Hill', 'Passage', 'Rise', 'Vale', 'Side'
]
# Dynamically construct the regex pattern with all possible street types
street_types_pattern = '|'.join(rf"{re.escape(street_type)}" for street_type in street_types)
# The overall regex pattern to capture the street name and preceding word(s)
pattern = rf'(?P<preceding_word>\w*\d\w*)\s*'
pattern += rf'(?P<street_name>\w+\s*\b(?:{street_types_pattern})\b)'
# Find all matches in text
matches = re.finditer(pattern, text, re.DOTALL | re.MULTILINE | re.IGNORECASE)
start_positions = []
end_positions = []
for match in matches:
preceding_word = match.group('preceding_word').strip()
street_name = match.group('street_name').strip()
start_pos = match.start()
end_pos = match.end()
#print(f"Start: {start_pos}, End: {end_pos}")
#print(f"Preceding words: {preceding_word}")
#print(f"Street name: {street_name}")
start_positions.append(start_pos)
end_positions.append(end_pos)
return start_positions, end_positions
class StreetNameRecognizer(EntityRecognizer):
def load(self) -> None:
"""No loading is required."""
pass
def analyze(self, text: str, entities: List[str], nlp_artifacts: NlpArtifacts) -> List[RecognizerResult]:
"""
Logic for detecting a specific PII
"""
start_pos, end_pos = extract_street_name(text)
results = []
for i in range(0, len(start_pos)):
result = RecognizerResult(
entity_type="STREETNAME",
start = start_pos[i],
end = end_pos[i],
score= 1
)
results.append(result)
return results
street_recogniser = StreetNameRecognizer(supported_entities=["STREETNAME"])
## Custom fuzzy match recogniser for list of strings
def custom_fuzzy_word_list_regex(text:str, custom_list:List[str]=[]):
# Create regex pattern, handling quotes carefully
quote_str = '"'
replace_str = '(?:"|"|")'
custom_regex_pattern = '|'.join(
rf'(?<!\w){re.escape(term.strip()).replace(quote_str, replace_str)}(?!\w)'
for term in custom_list
)
# Find all matches in text
matches = re.finditer(custom_regex_pattern, text, re.DOTALL | re.MULTILINE | re.IGNORECASE)
start_positions = []
end_positions = []
for match in matches:
start_pos = match.start()
end_pos = match.end()
start_positions.append(start_pos)
end_positions.append(end_pos)
return start_positions, end_positions
def spacy_fuzzy_search(text: str, custom_query_list:List[str]=[], spelling_mistakes_max:int = 1, search_whole_phrase:bool=True, nlp=nlp, progress=gr.Progress(track_tqdm=True)):
''' Conduct fuzzy match on a list of text data.'''
all_matches = []
all_start_positions = []
all_end_positions = []
all_ratios = []
#print("custom_query_list:", custom_query_list)
if not text:
out_message = "No text data found. Skipping page."
print(out_message)
return all_start_positions, all_end_positions
for string_query in custom_query_list:
#print("text:", text)
#print("string_query:", string_query)
query = nlp(string_query)
if search_whole_phrase == False:
# Keep only words that are not stop words
token_query = [token.text for token in query if not token.is_space and not token.is_stop and not token.is_punct]
spelling_mistakes_fuzzy_pattern = "FUZZY" + str(spelling_mistakes_max)
#print("token_query:", token_query)
if len(token_query) > 1:
#pattern_lemma = [{"LEMMA": {"IN": query}}]
pattern_fuzz = [{"TEXT": {spelling_mistakes_fuzzy_pattern: {"IN": token_query}}}]
else:
#pattern_lemma = [{"LEMMA": query[0]}]
pattern_fuzz = [{"TEXT": {spelling_mistakes_fuzzy_pattern: token_query[0]}}]
matcher = Matcher(nlp.vocab)
matcher.add(string_query, [pattern_fuzz])
#matcher.add(string_query, [pattern_lemma])
else:
# If matching a whole phrase, use Spacy PhraseMatcher, then consider similarity after using Levenshtein distance.
#tokenised_query = [string_query.lower()]
# If you want to match the whole phrase, use phrase matcher
matcher = FuzzyMatcher(nlp.vocab)
patterns = [nlp.make_doc(string_query)] # Convert query into a Doc object
matcher.add("PHRASE", patterns, [{"ignore_case": True}])
batch_size = 256
docs = nlp.pipe([text], batch_size=batch_size)
# Get number of matches per doc
for doc in docs: #progress.tqdm(docs, desc = "Searching text", unit = "rows"):
matches = matcher(doc)
match_count = len(matches)
# If considering each sub term individually, append match. If considering together, consider weight of the relevance to that of the whole phrase.
if search_whole_phrase==False:
all_matches.append(match_count)
for match_id, start, end in matches:
span = str(doc[start:end]).strip()
query_search = str(query).strip()
#print("doc:", doc)
#print("span:", span)
#print("query_search:", query_search)
# Convert word positions to character positions
start_char = doc[start].idx # Start character position
end_char = doc[end - 1].idx + len(doc[end - 1]) # End character position
# The positions here are word position, not character position
all_matches.append(match_count)
all_start_positions.append(start_char)
all_end_positions.append(end_char)
else:
for match_id, start, end, ratio, pattern in matches:
span = str(doc[start:end]).strip()
query_search = str(query).strip()
#print("doc:", doc)
#print("span:", span)
#print("query_search:", query_search)
# Calculate Levenshtein distance. Only keep matches with less than specified number of spelling mistakes
distance = Levenshtein.distance(query_search.lower(), span.lower())
#print("Levenshtein distance:", distance)
if distance > spelling_mistakes_max:
match_count = match_count - 1
else:
# Convert word positions to character positions
start_char = doc[start].idx # Start character position
end_char = doc[end - 1].idx + len(doc[end - 1]) # End character position
#print("start_char:", start_char)
#print("end_char:", end_char)
all_matches.append(match_count)
all_start_positions.append(start_char)
all_end_positions.append(end_char)
all_ratios.append(ratio)
return all_start_positions, all_end_positions
class CustomWordFuzzyRecognizer(EntityRecognizer):
def __init__(self, supported_entities: List[str], custom_list: List[str] = [], spelling_mistakes_max: int = 1, search_whole_phrase: bool = True):
super().__init__(supported_entities=supported_entities)
self.custom_list = custom_list # Store the custom_list as an instance attribute
self.spelling_mistakes_max = spelling_mistakes_max # Store the max spelling mistakes
self.search_whole_phrase = search_whole_phrase # Store the search whole phrase flag
def load(self) -> None:
"""No loading is required."""
pass
def analyze(self, text: str, entities: List[str], nlp_artifacts: NlpArtifacts) -> List[RecognizerResult]:
"""
Logic for detecting a specific PII
"""
start_pos, end_pos = spacy_fuzzy_search(text, self.custom_list, self.spelling_mistakes_max, self.search_whole_phrase) # Pass new parameters
results = []
for i in range(0, len(start_pos)):
result = RecognizerResult(
entity_type="CUSTOM_FUZZY",
start=start_pos[i],
end=end_pos[i],
score=1
)
results.append(result)
return results
custom_list_default = []
custom_word_fuzzy_recognizer = CustomWordFuzzyRecognizer(supported_entities=["CUSTOM_FUZZY"], custom_list=custom_list_default)
# Create a class inheriting from SpacyNlpEngine
class LoadedSpacyNlpEngine(SpacyNlpEngine):
def __init__(self, loaded_spacy_model):
super().__init__()
self.nlp = {"en": loaded_spacy_model}
# Pass the loaded model to the new LoadedSpacyNlpEngine
loaded_nlp_engine = LoadedSpacyNlpEngine(loaded_spacy_model = nlp)
nlp_analyser = AnalyzerEngine(nlp_engine=loaded_nlp_engine,
default_score_threshold=score_threshold,
supported_languages=["en"],
log_decision_process=False,
)
# Add custom recognisers to nlp_analyser
nlp_analyser.registry.add_recognizer(street_recogniser)
nlp_analyser.registry.add_recognizer(ukpostcode_recogniser)
nlp_analyser.registry.add_recognizer(titles_recogniser)
nlp_analyser.registry.add_recognizer(custom_recogniser)
nlp_analyser.registry.add_recognizer(custom_word_fuzzy_recognizer)