Spaces:
Runtime error
Runtime error
File size: 87,020 Bytes
59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 b7f4700 59c1c22 f8f34c2 59c1c22 f8f34c2 59c1c22 f8f34c2 59c1c22 f8f34c2 59c1c22 f8f34c2 59c1c22 b7f4700 59c1c22 f8f34c2 59c1c22 f8f34c2 59c1c22 b7f4700 59c1c22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 |
import os
import google.generativeai as ai
import pandas as pd
import numpy as np
import gradio as gr
import markdown
import time
import boto3
import json
import string
import re
from rapidfuzz import process, fuzz
from tqdm import tqdm
from gradio import Progress
from typing import List, Tuple
from io import StringIO
GradioFileData = gr.FileData
from tools.prompts import initial_table_prompt, prompt2, prompt3, system_prompt, summarise_topic_descriptions_prompt, summarise_topic_descriptions_system_prompt, add_existing_topics_system_prompt, add_existing_topics_prompt
from tools.helper_functions import output_folder, detect_file_type, get_file_path_end, read_file, get_or_create_env_var, model_name_map, put_columns_in_df
from tools.chatfuncs import model, CtransGenGenerationConfig, temperature, context_length, call_llama_cpp_model
# ResponseObject class for AWS Bedrock calls
class ResponseObject:
def __init__(self, text, usage_metadata):
self.text = text
self.usage_metadata = usage_metadata
max_tokens = 4096
timeout_wait = 30 # AWS now seems to have a 60 second minimum wait between API calls
number_of_api_retry_attempts = 5
max_time_for_loop = 99999
batch_size_default = 5
AWS_DEFAULT_REGION = get_or_create_env_var('AWS_DEFAULT_REGION', 'eu-west-2')
print(f'The value of AWS_DEFAULT_REGION is {AWS_DEFAULT_REGION}')
bedrock_runtime = boto3.client('bedrock-runtime', region_name=AWS_DEFAULT_REGION)
### HELPER FUNCTIONS
def normalise_string(text):
# Replace two or more dashes with a single dash
text = re.sub(r'-{2,}', '-', text)
# Replace two or more spaces with a single space
text = re.sub(r'\s{2,}', ' ', text)
return text
def load_in_file(file_path: str, colname:str=""):
"""
Loads in a tabular data file and returns data and file name.
Parameters:
- file_path (str): The path to the file to be processed.
"""
file_type = detect_file_type(file_path)
print("File type is:", file_type)
file_name = get_file_path_end(file_path)
file_data = read_file(file_path)
if colname:
file_data[colname] = file_data[colname].fillna("")
file_data[colname] = file_data[colname].astype(str).str.replace("\bnan\b", "", regex=True)
#print(file_data[colname])
return file_data, file_name
def load_in_data_file(file_paths:List[str], in_colnames:List[str], batch_size:int=50):
'''Load in data table, work out how many batches needed.'''
try:
file_data, file_name = load_in_file(file_paths[0], colname=in_colnames)
num_batches = (len(file_data) // batch_size) + 1
print("Total number of batches:", num_batches)
except Exception as e:
print(e)
file_data = pd.DataFrame()
file_name = ""
num_batches = 1
return file_data, file_name, num_batches
def load_in_previous_data_files(file_paths_partial_output:List[str]):
'''Load in data table from a partially completed consultation summary to continue it.'''
reference_file_data = pd.DataFrame()
reference_file_name = ""
unique_file_data = pd.DataFrame()
unique_file_name = ""
out_message = ""
latest_batch = 0
for file in file_paths_partial_output:
# If reference table
if 'reference_table' in file.name:
try:
reference_file_data, reference_file_name = load_in_file(file)
print("reference_file_data:", reference_file_data.head(2))
out_message = out_message + " Reference file load successful"
except Exception as e:
out_message = "Could not load reference file data:" + str(e)
print("Could not load reference file data:", e)
# If unique table
if 'unique_topics' in file.name:
try:
unique_file_data, unique_file_name = load_in_file(file)
print("unique_topics_file:", unique_file_data.head(2))
out_message = out_message + " Unique table file load successful"
except Exception as e:
out_message = "Could not load unique table file data:" + str(e)
print("Could not load unique table file data:", e)
if 'batch_' in file.name:
latest_batch = re.search(r'batch_(\d+)', file.name).group(1)
print("latest batch:", latest_batch)
latest_batch = int(latest_batch)
if latest_batch == 0:
out_message = out_message + " Latest batch number not found."
if reference_file_data.empty:
out_message = out_message + " No reference data table provided."
if unique_file_data.empty:
out_message = out_message + " No unique data table provided."
print(out_message)
return reference_file_data, unique_file_data, latest_batch, out_message, reference_file_name
def data_file_to_markdown_table(file_data:pd.DataFrame, file_name:str, chosen_cols: List[str], output_folder: str, batch_number: int, batch_size: int) -> Tuple[str, str, str]:
"""
Processes a file by simplifying its content based on chosen columns and saves the result to a specified output folder.
Parameters:
- file_data (pd.DataFrame): Tabular data file with responses.
- file_name (str): File name with extension.
- chosen_cols (List[str]): A list of column names to include in the simplified file.
- output_folder (str): The directory where the simplified file will be saved.
- batch_number (int): The current batch number for processing.
- batch_size (int): The number of rows to process in each batch.
Returns:
- Tuple[str, str, str]: A tuple containing the path to the simplified CSV file, the simplified markdown table as a string, and the file path end (used for naming the output file).
"""
#print("\nfile_data_in_markdown func:", file_data)
#print("\nBatch size in markdown func:", str(batch_size))
normalised_simple_markdown_table = ""
simplified_csv_table_path = ""
# Simplify table to just responses column and the Response reference number
simple_file = file_data[[chosen_cols]].reset_index(names="Reference")
simple_file["Reference"] = simple_file["Reference"].astype(int) + 1
simple_file = simple_file.rename(columns={chosen_cols: "Response"})
simple_file["Response"] = simple_file["Response"].str.strip()
file_len = len(simple_file["Reference"])
# Subset the data for the current batch
start_row = batch_number * batch_size
if start_row > file_len + 1:
print("Start row greater than file row length")
return simplified_csv_table_path, normalised_simple_markdown_table, file_name
if (start_row + batch_size) <= file_len + 1:
end_row = start_row + batch_size
else:
end_row = file_len + 1
simple_file = simple_file[start_row:end_row] # Select the current batch
# Now replace the reference numbers with numbers starting from 1
simple_file["Reference"] = simple_file["Reference"] - start_row
#print("simple_file:", simple_file)
# Remove problematic characters including ASCII and various quote marks
# Remove problematic characters including control characters, special characters, and excessive leading/trailing whitespace
simple_file["Response"] = simple_file["Response"].str.replace(r'[\x00-\x1F\x7F]|[""<>]|\\', '', regex=True) # Remove control and special characters
simple_file["Response"] = simple_file["Response"].str.strip() # Remove leading and trailing whitespace
simple_file["Response"] = simple_file["Response"].str.replace(r'\s+', ' ', regex=True) # Replace multiple spaces with a single space
simple_file["Response"] = simple_file["Response"].str.replace(r'\n{2,}', '\n', regex=True) # Replace multiple line breaks with a single line break
simple_file["Response"] = simple_file["Response"].str.slice(0, 2500) # Maximum 1,500 character responses
# Remove blank and extremely short responses
simple_file = simple_file.loc[~(simple_file["Response"].isnull()) &\
~(simple_file["Response"] == "None") &\
~(simple_file["Response"] == " ") &\
~(simple_file["Response"] == ""),:]#~(simple_file["Response"].str.len() < 5), :]
simplified_csv_table_path = output_folder + 'simple_markdown_table_' + file_name + '_row_' + str(start_row) + '_to_' + str(end_row) + '.csv'
simple_file.to_csv(simplified_csv_table_path, index=None)
simple_markdown_table = simple_file.to_markdown(index=None)
normalised_simple_markdown_table = normalise_string(simple_markdown_table)
return simplified_csv_table_path, normalised_simple_markdown_table, start_row, end_row, simple_file
def replace_punctuation_with_underscore(input_string):
# Create a translation table where each punctuation character maps to '_'
translation_table = str.maketrans(string.punctuation, '_' * len(string.punctuation))
# Translate the input string using the translation table
return input_string.translate(translation_table)
### LLM FUNCTIONS
def construct_gemini_generative_model(in_api_key: str, temperature: float, model_choice: str, system_prompt: str, max_tokens: int) -> Tuple[object, dict]:
"""
Constructs a GenerativeModel for Gemini API calls.
Parameters:
- in_api_key (str): The API key for authentication.
- temperature (float): The temperature parameter for the model, controlling the randomness of the output.
- model_choice (str): The choice of model to use for generation.
- system_prompt (str): The system prompt to guide the generation.
- max_tokens (int): The maximum number of tokens to generate.
Returns:
- Tuple[object, dict]: A tuple containing the constructed GenerativeModel and its configuration.
"""
# Construct a GenerativeModel
try:
if in_api_key:
#print("Getting API key from textbox")
api_key = in_api_key
ai.configure(api_key=api_key)
elif "GOOGLE_API_KEY" in os.environ:
#print("Searching for API key in environmental variables")
api_key = os.environ["GOOGLE_API_KEY"]
ai.configure(api_key=api_key)
else:
print("No API key foound")
raise gr.Error("No API key found.")
except Exception as e:
print(e)
config = ai.GenerationConfig(temperature=temperature, max_output_tokens=max_tokens)
#model = ai.GenerativeModel.from_cached_content(cached_content=cache, generation_config=config)
model = ai.GenerativeModel(model_name='models/' + model_choice, system_instruction=system_prompt, generation_config=config)
# Upload CSV file (replace with your actual file path)
#file_id = ai.upload_file(upload_file_path)
# if file_type == 'xlsx':
# print("Running through all xlsx sheets")
# #anon_xlsx = pd.ExcelFile(upload_file_path)
# if not in_excel_sheets:
# out_message.append("No Excel sheets selected. Please select at least one to anonymise.")
# continue
# anon_xlsx = pd.ExcelFile(upload_file_path)
# # Create xlsx file:
# anon_xlsx_export_file_name = output_folder + file_name + "_redacted.xlsx"
### QUERYING LARGE LANGUAGE MODEL ###
# Prompt caching the table and system prompt. See here: https://ai.google.dev/gemini-api/docs/caching?lang=python
# Create a cache with a 5 minute TTL. ONLY FOR CACHES OF AT LEAST 32k TOKENS!
# cache = ai.caching.CachedContent.create(
# model='models/' + model_choice,
# display_name=file_name, # used to identify the cache
# system_instruction=system_prompt,
# ttl=datetime.timedelta(minutes=5),
# )
return model, config
def call_aws_claude(prompt: str, system_prompt: str, temperature: float, max_tokens: int, model_choice: str) -> ResponseObject:
"""
This function sends a request to AWS Claude with the following parameters:
- prompt: The user's input prompt to be processed by the model.
- system_prompt: A system-defined prompt that provides context or instructions for the model.
- temperature: A value that controls the randomness of the model's output, with higher values resulting in more diverse responses.
- max_tokens: The maximum number of tokens (words or characters) in the model's response.
- model_choice: The specific model to use for processing the request.
The function constructs the request configuration, invokes the model, extracts the response text, and returns a ResponseObject containing the text and metadata.
"""
prompt_config = {
"anthropic_version": "bedrock-2023-05-31",
"max_tokens": max_tokens,
"top_p": 0.999,
"temperature":temperature,
"system": system_prompt,
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
],
}
],
}
body = json.dumps(prompt_config)
modelId = model_choice
accept = "application/json"
contentType = "application/json"
request = bedrock_runtime.invoke_model(
body=body, modelId=modelId, accept=accept, contentType=contentType
)
# Extract text from request
response_body = json.loads(request.get("body").read())
text = response_body.get("content")[0].get("text")
response = ResponseObject(
text=text,
usage_metadata=request['ResponseMetadata']
)
# Now you can access both the text and metadata
#print("Text:", response.text)
print("Metadata:", response.usage_metadata)
#print("Text:", response.text)
return response
# Function to send a request and update history
def send_request(prompt: str, conversation_history: List[dict], model: object, config: dict, model_choice: str, system_prompt: str, temperature: float, progress=Progress(track_tqdm=True)) -> Tuple[str, List[dict]]:
"""
This function sends a request to a language model with the given prompt, conversation history, model configuration, model choice, system prompt, and temperature.
It constructs the full prompt by appending the new user prompt to the conversation history, generates a response from the model, and updates the conversation history with the new prompt and response.
If the model choice is specific to AWS Claude, it calls the `call_aws_claude` function; otherwise, it uses the `model.generate_content` method.
The function returns the response text and the updated conversation history.
"""
# Constructing the full prompt from the conversation history
full_prompt = "Conversation history:\n"
for entry in conversation_history:
role = entry['role'].capitalize() # Assuming the history is stored with 'role' and 'parts'
message = ' '.join(entry['parts']) # Combining all parts of the message
full_prompt += f"{role}: {message}\n"
# Adding the new user prompt
full_prompt += f"\nUser: {prompt}"
# Clear any existing progress bars
tqdm._instances.clear()
# Print the full prompt for debugging purposes
#print("full_prompt:", full_prompt)
#progress_bar = tqdm(range(0,number_of_api_retry_attempts), desc="Calling API with " + str(timeout_wait) + " seconds per retry.", unit="attempts")
progress_bar = range(0,number_of_api_retry_attempts)
# Generate the model's response
if model_choice in ["gemini-1.5-flash-002", "gemini-1.5-pro-002"]:
for i in progress_bar:
try:
print("Calling Gemini model, attempt", i + 1)
#print("full_prompt:", full_prompt)
#print("generation_config:", config)
response = model.generate_content(contents=full_prompt, generation_config=config)
#progress_bar.close()
#tqdm._instances.clear()
print("Successful call to Gemini model.")
break
except Exception as e:
# If fails, try again after X seconds in case there is a throttle limit
print("Call to Gemini model failed:", e, " Waiting for ", str(timeout_wait), "seconds and trying again.")
time.sleep(timeout_wait)
if i == number_of_api_retry_attempts:
return ResponseObject(text="", usage_metadata={'RequestId':"FAILED"}), conversation_history
elif model_choice in ["anthropic.claude-3-haiku-20240307-v1:0", "anthropic.claude-3-sonnet-20240229-v1:0"]:
for i in progress_bar:
try:
print("Calling AWS Claude model, attempt", i + 1)
response = call_aws_claude(prompt, system_prompt, temperature, max_tokens, model_choice)
#progress_bar.close()
#tqdm._instances.clear()
print("Successful call to Claude model.")
break
except Exception as e:
# If fails, try again after X seconds in case there is a throttle limit
print("Call to Claude model failed:", e, " Waiting for ", str(timeout_wait), "seconds and trying again.")
time.sleep(timeout_wait)
#response = call_aws_claude(prompt, system_prompt, temperature, max_tokens, model_choice)
if i == number_of_api_retry_attempts:
return ResponseObject(text="", usage_metadata={'RequestId':"FAILED"}), conversation_history
else:
# This is the Gemma model
for i in progress_bar:
try:
print("Calling Gemma 2B Instruct model, attempt", i + 1)
gen_config = CtransGenGenerationConfig()
gen_config.update_temp(temperature)
response = call_llama_cpp_model(prompt, gen_config)
#progress_bar.close()
#tqdm._instances.clear()
print("Successful call to Gemma model.")
print("Response:", response)
break
except Exception as e:
# If fails, try again after X seconds in case there is a throttle limit
print("Call to Gemma model failed:", e, " Waiting for ", str(timeout_wait), "seconds and trying again.")
time.sleep(timeout_wait)
#response = call_aws_claude(prompt, system_prompt, temperature, max_tokens, model_choice)
if i == number_of_api_retry_attempts:
return ResponseObject(text="", usage_metadata={'RequestId':"FAILED"}), conversation_history
# Update the conversation history with the new prompt and response
conversation_history.append({'role': 'user', 'parts': [prompt]})
# output_str = output['choices'][0]['text']
# Check if is a LLama.cpp model response
if 'choices' in response:
conversation_history.append({'role': 'assistant', 'parts': [response['choices'][0]['text']]})
else:
conversation_history.append({'role': 'assistant', 'parts': [response.text]})
# Print the updated conversation history
#print("conversation_history:", conversation_history)
return response, conversation_history
def process_requests(prompts: List[str], system_prompt: str, conversation_history: List[dict], whole_conversation: List[str], whole_conversation_metadata: List[str], model: object, config: dict, model_choice: str, temperature: float, batch_no:int = 1, master:bool = False) -> Tuple[List[ResponseObject], List[dict], List[str], List[str]]:
"""
Processes a list of prompts by sending them to the model, appending the responses to the conversation history, and updating the whole conversation and metadata.
Args:
prompts (List[str]): A list of prompts to be processed.
system_prompt (str): The system prompt.
conversation_history (List[dict]): The history of the conversation.
whole_conversation (List[str]): The complete conversation including prompts and responses.
whole_conversation_metadata (List[str]): Metadata about the whole conversation.
model (object): The model to use for processing the prompts.
config (dict): Configuration for the model.
model_choice (str): The choice of model to use.
temperature (float): The temperature parameter for the model.
batch_no (int): Batch number of the large language model request.
master (bool): Is this request for the master table.
Returns:
Tuple[List[ResponseObject], List[dict], List[str], List[str]]: A tuple containing the list of responses, the updated conversation history, the updated whole conversation, and the updated whole conversation metadata.
"""
responses = []
# Clear any existing progress bars
tqdm._instances.clear()
for prompt in prompts:
#print("prompt to LLM:", prompt)
response, conversation_history = send_request(prompt, conversation_history, model=model, config=config, model_choice=model_choice, system_prompt=system_prompt, temperature=temperature)
if 'choices' in response:
responses.append(response)
# Create conversation txt object
whole_conversation.append(prompt)
whole_conversation.append(response['choices'][0]['text'])
else:
responses.append(response)
#print("response.usage_metadata:", response.usage_metadata)
#print("Response.text:", response.text)
#print("responses:", responses)
# Create conversation txt object
whole_conversation.append(prompt)
whole_conversation.append(response.text)
# Create conversation metadata
if master == False:
whole_conversation_metadata.append(f"Query batch {batch_no} prompt {len(responses)} metadata:")
else:
whole_conversation_metadata.append(f"Query summary metadata:")
if not isinstance(response, str):
try:
print("model_choice:", model_choice)
if "claude" in model_choice:
print("Appending selected metadata items to metadata")
whole_conversation_metadata.append('x-amzn-bedrock-output-token-count:')
whole_conversation_metadata.append(str(response.usage_metadata['HTTPHeaders']['x-amzn-bedrock-output-token-count']))
whole_conversation_metadata.append('x-amzn-bedrock-input-token-count:')
whole_conversation_metadata.append(str(response.usage_metadata['HTTPHeaders']['x-amzn-bedrock-input-token-count']))
elif "gemini" in model_choice:
whole_conversation_metadata.append(str(response.usage_metadata))
else:
whole_conversation_metadata.append(str(response['usage']))
except KeyError as e:
print(f"Key error: {e} - Check the structure of response.usage_metadata")
else:
print("Response is a string object.")
whole_conversation_metadata.append("Length prompt: " + str(len(prompt)) + ". Length response: " + str(len(response)))
return responses, conversation_history, whole_conversation, whole_conversation_metadata
### INITIAL TOPIC MODEL DEVELOPMENT FUNCTIONS
def clean_markdown_table(text: str):
lines = text.splitlines()
# Remove any empty rows or rows with only pipes
cleaned_lines = [line for line in lines if not re.match(r'^\s*\|?\s*\|?\s*$', line)]
# Merge lines that belong to the same row (i.e., don't start with |)
merged_lines = []
buffer = ""
for line in cleaned_lines:
if line.lstrip().startswith('|'): # If line starts with |, it's a new row
if buffer:
merged_lines.append(buffer) # Append the buffered content
buffer = line # Start a new buffer with this row
else:
# Continuation of the previous row
buffer += ' ' + line.strip() # Add content to the current buffer
# Don't forget to append the last buffer
if buffer:
merged_lines.append(buffer)
# Fix the header separator row if necessary
if len(merged_lines) > 1:
header_pipes = merged_lines[0].count('|') # Count pipes in the header row
header_separator = '|---|' * (header_pipes - 1) + '|---|' # Generate proper separator
# Replace or insert the separator row
if not re.match(r'^\|[-:|]+$', merged_lines[1]): # Check if the second row is a valid separator
merged_lines.insert(1, header_separator)
else:
# Adjust the separator to match the header pipes
merged_lines[1] = '|---|' * (header_pipes - 1) + '|'
# Ensure consistent number of pipes in each row
result = []
header_pipes = merged_lines[0].count('|') # Use the header row to count the number of pipes
for line in merged_lines:
# Strip excessive whitespace around pipes
line = re.sub(r'\s*\|\s*', '|', line.strip())
# Fix inconsistent number of pipes by adjusting them to match the header
pipe_count = line.count('|')
if pipe_count < header_pipes:
line += '|' * (header_pipes - pipe_count) # Add missing pipes
elif pipe_count > header_pipes:
# If too many pipes, split line and keep the first `header_pipes` columns
columns = line.split('|')[:header_pipes + 1] # +1 to keep last pipe at the end
line = '|'.join(columns)
line = re.sub(r'(\d),(?=\d)', r'\1, ', line)
result.append(line)
# Join lines back into the cleaned markdown text
cleaned_text = '\n'.join(result)
# Replace numbers next to commas and other numbers with a space
return cleaned_text
def clean_column_name(column_name, max_length=20):
# Convert to string
column_name = str(column_name)
# Replace non-alphanumeric characters (except underscores) with underscores
column_name = re.sub(r'\W+', '_', column_name)
# Remove leading/trailing underscores
column_name = column_name.strip('_')
# Ensure the result is not empty; fall back to "column" if necessary
column_name = column_name if column_name else "column"
# Truncate to max_length
return column_name[:max_length]
def create_unique_table_df_from_reference_table(reference_df:pd.DataFrame):
new_unique_topics_df = reference_df[["General Topic", "Subtopic", "Sentiment"]]
new_unique_topics_df = new_unique_topics_df.rename(columns={new_unique_topics_df.columns[0]: "General Topic", new_unique_topics_df.columns[1]: "Subtopic", new_unique_topics_df.columns[2]: "Sentiment"})
# Join existing and new unique topics
out_unique_topics_df = new_unique_topics_df
out_unique_topics_df = out_unique_topics_df.rename(columns={out_unique_topics_df.columns[0]: "General Topic", out_unique_topics_df.columns[1]: "Subtopic", out_unique_topics_df.columns[2]: "Sentiment"})
#print("out_unique_topics_df:", out_unique_topics_df)
out_unique_topics_df = out_unique_topics_df.drop_duplicates(["General Topic", "Subtopic", "Sentiment"]).\
drop(["Response References", "Summary"], axis = 1, errors="ignore")
# Get count of rows that refer to particular topics
reference_counts = reference_df.groupby(["General Topic", "Subtopic", "Sentiment"]).agg({
'Response References': 'size', # Count the number of references
'Summary': lambda x: '<br>'.join(
sorted(set(x), key=lambda summary: reference_df.loc[reference_df['Summary'] == summary, 'Start row of group'].min())
)
}).reset_index()
# Join the counts to existing_unique_topics_df
out_unique_topics_df = out_unique_topics_df.merge(reference_counts, how='left', on=["General Topic", "Subtopic", "Sentiment"]).sort_values("Response References", ascending=False)
return out_unique_topics_df
def write_llm_output_and_logs(responses: List[ResponseObject],
whole_conversation: List[str],
whole_conversation_metadata: List[str],
file_name: str,
latest_batch_completed: int,
start_row:int,
end_row:int,
model_choice_clean: str,
temperature: float,
log_files_output_paths: List[str],
existing_reference_df:pd.DataFrame,
existing_topics_df:pd.DataFrame,
batch_size_number:int,
in_column:str,
first_run: bool = False) -> None:
"""
Writes the output of the large language model requests and logs to files.
Parameters:
- responses (List[ResponseObject]): A list of ResponseObject instances containing the text and usage metadata of the responses.
- whole_conversation (List[str]): A list of strings representing the complete conversation including prompts and responses.
- whole_conversation_metadata (List[str]): A list of strings representing metadata about the whole conversation.
- file_name (str): The base part of the output file name.
- latest_batch_completed (int): The index of the current batch.
- start_row (int): Start row of the current batch.
- end_row (int): End row of the current batch.
- model_choice_clean (str): The cleaned model choice string.
- temperature (float): The temperature parameter used in the model.
- log_files_output_paths (List[str]): A list of paths to the log files.
- existing_reference_df (pd.DataFrame): The existing reference dataframe mapping response numbers to topics.
- existing_topics_df (pd.DataFrame): The existing unique topics dataframe
- first_run (bool): A boolean indicating if this is the first run through this function in this process. Defaults to False.
"""
unique_topics_df_out_path = []
topic_table_out_path = "topic_table_error.csv"
reference_table_out_path = "reference_table_error.csv"
unique_topics_df_out_path = "unique_topic_table_error.csv"
topic_with_response_df = pd.DataFrame()
markdown_table = ""
out_reference_df = pd.DataFrame()
out_unique_topics_df = pd.DataFrame()
batch_file_path_details = "error"
# If there was an error in parsing, return boolean saying error
is_error = False
# Convert conversation to string and add to log outputs
whole_conversation_str = '\n'.join(whole_conversation)
whole_conversation_metadata_str = '\n'.join(whole_conversation_metadata)
start_row_reported = start_row + 1
# Example usage
in_column_cleaned = clean_column_name(in_column, max_length=20)
# Need to reduce output file names as full length files may be too long
file_name = clean_column_name(file_name, max_length=30)
# Save outputs for each batch. If master file created, label file as master
batch_file_path_details = f"{file_name}_batch_{latest_batch_completed + 1}_size_{batch_size_number}_col_{in_column_cleaned}"
row_number_string_start = f"Rows {start_row_reported} to {end_row}: "
print("batch_file_path_details:", batch_file_path_details)
whole_conversation_path = output_folder + batch_file_path_details + "_full_conversation_" + model_choice_clean + "_temp_" + str(temperature) + ".txt"
whole_conversation_path_meta = output_folder + batch_file_path_details + "_metadata_" + model_choice_clean + "_temp_" + str(temperature) + ".txt"
#with open(whole_conversation_path, "w", encoding='utf-8', errors='replace') as f:
# f.write(whole_conversation_str)
with open(whole_conversation_path_meta, "w", encoding='utf-8', errors='replace') as f:
f.write(whole_conversation_metadata_str)
#log_files_output_paths.append(whole_conversation_path)
log_files_output_paths.append(whole_conversation_path_meta)
# Convert output table to markdown and then to a pandas dataframe to csv
def remove_before_last_term(input_string: str) -> str:
# Use regex to find the last occurrence of the term
match = re.search(r'(\| ?General Topic)', input_string)
if match:
# Find the last occurrence by using rfind
last_index = input_string.rfind(match.group(0))
return input_string[last_index:] # Return everything from the last match onward
return input_string # Return the original string if the term is not found
if "choices" in responses[-1]:
print("Text response:", responses[-1]["choices"][0]['text'])
start_of_table_response = remove_before_last_term(responses[-1]["choices"][0]['text'])
cleaned_response = clean_markdown_table(start_of_table_response)
print("cleaned_response:", cleaned_response)
else:
start_of_table_response = remove_before_last_term(responses[-1].text)
cleaned_response = clean_markdown_table(start_of_table_response)
markdown_table = markdown.markdown(cleaned_response, extensions=['tables'])
#print("markdown_table:", markdown_table)
# Remove <p> tags and make sure it has a valid HTML structure
html_table = re.sub(r'<p>(.*?)</p>', r'\1', markdown_table)
html_table = html_table.replace('<p>', '').replace('</p>', '').strip()
# Now ensure that the HTML structure is correct
if "<table>" not in html_table:
html_table = f"""
<table>
<tr>
<th>General Topic</th>
<th>Subtopic</th>
<th>Sentiment</th>
<th>Response References</th>
<th>Summary</th>
</tr>
{html_table}
</table>
"""
# print("Markdown table as HTML:", html_table)
html_buffer = StringIO(html_table)
try:
topic_with_response_df = pd.read_html(html_buffer)[0] # Assuming the first table in the HTML is the one you want
except Exception as e:
print("Error when trying to parse table:", e)
is_error = True
raise ValueError()
return topic_table_out_path, reference_table_out_path, unique_topics_df_out_path, topic_with_response_df, markdown_table, out_reference_df, out_unique_topics_df, batch_file_path_details, is_error
# Rename columns to ensure consistent use of data frames later in code
topic_with_response_df.columns = ["General Topic", "Subtopic", "Sentiment", "Response References", "Summary"]
# Fill in NA rows with values from above (topics seem to be included only on one row):
topic_with_response_df = topic_with_response_df.ffill()
#print("topic_with_response_df:", topic_with_response_df)
# For instances where you end up with float values in Response references
topic_with_response_df["Response References"] = topic_with_response_df["Response References"].astype(str).str.replace(".0", "", regex=False)
# Strip and lower case topic names to remove issues where model is randomly capitalising topics/sentiment
topic_with_response_df["General Topic"] = topic_with_response_df["General Topic"].str.strip().str.lower().str.capitalize()
topic_with_response_df["Subtopic"] = topic_with_response_df["Subtopic"].str.strip().str.lower().str.capitalize()
topic_with_response_df["Sentiment"] = topic_with_response_df["Sentiment"].str.strip().str.lower().str.capitalize()
topic_table_out_path = output_folder + batch_file_path_details + "_topic_table_" + model_choice_clean + "_temp_" + str(temperature) + ".csv"
# Table to map references to topics
reference_data = []
# Iterate through each row in the original DataFrame
for index, row in topic_with_response_df.iterrows():
#references = re.split(r',\s*|\s+', str(row.iloc[4])) if pd.notna(row.iloc[4]) else ""
references = re.findall(r'\d+', str(row.iloc[3])) if pd.notna(row.iloc[3]) else []
# If no numbers found in the Response References column, check the Summary column in case reference numbers were put there by mistake
if not references:
references = re.findall(r'\d+', str(row.iloc[4])) if pd.notna(row.iloc[4]) else []
topic = row.iloc[0] if pd.notna(row.iloc[0]) else ""
subtopic = row.iloc[1] if pd.notna(row.iloc[1]) else ""
sentiment = row.iloc[2] if pd.notna(row.iloc[2]) else ""
summary = row.iloc[4] if pd.notna(row.iloc[4]) else ""
# If the reference response column is very long, and there's nothing in the summary column, assume that the summary was put in the reference column
if not summary and len(row.iloc[3] > 30):
summary = row.iloc[3]
summary = row_number_string_start + summary
# Create a new entry for each reference number
for ref in references:
# Add start_row back onto reference_number
try:
response_ref_no = str(int(ref) + int(start_row))
except ValueError:
print("Reference is not a number")
continue
reference_data.append({
'Response References': response_ref_no,
'General Topic': topic,
'Subtopic': subtopic,
'Sentiment': sentiment,
'Summary': summary,
"Start row of group": start_row_reported
})
# Create a new DataFrame from the reference data
new_reference_df = pd.DataFrame(reference_data)
print("new_reference_df:", new_reference_df)
# Append on old reference data
out_reference_df = pd.concat([new_reference_df, existing_reference_df]).dropna(how='all')
# Remove duplicate Response references for the same topic
out_reference_df.drop_duplicates(["Response References", "General Topic", "Subtopic", "Sentiment"], inplace=True)
out_reference_df.sort_values(["Start row of group", "Response References", "General Topic", "Subtopic", "Sentiment"], inplace=True)
# Save the new DataFrame to CSV
reference_table_out_path = output_folder + batch_file_path_details + "_reference_table_" + model_choice_clean + "_temp_" + str(temperature) + ".csv"
# Table of all unique topics with descriptions
#print("topic_with_response_df:", topic_with_response_df)
new_unique_topics_df = topic_with_response_df[["General Topic", "Subtopic", "Sentiment"]]
new_unique_topics_df = new_unique_topics_df.rename(columns={new_unique_topics_df.columns[0]: "General Topic", new_unique_topics_df.columns[1]: "Subtopic", new_unique_topics_df.columns[2]: "Sentiment"})
# Join existing and new unique topics
out_unique_topics_df = pd.concat([new_unique_topics_df, existing_topics_df]).dropna(how='all')
out_unique_topics_df = out_unique_topics_df.rename(columns={out_unique_topics_df.columns[0]: "General Topic", out_unique_topics_df.columns[1]: "Subtopic", out_unique_topics_df.columns[2]: "Sentiment"})
#print("out_unique_topics_df:", out_unique_topics_df)
out_unique_topics_df = out_unique_topics_df.drop_duplicates(["General Topic", "Subtopic", "Sentiment"]).\
drop(["Response References", "Summary"], axis = 1, errors="ignore")
# Get count of rows that refer to particular topics
reference_counts = out_reference_df.groupby(["General Topic", "Subtopic", "Sentiment"]).agg({
'Response References': 'size', # Count the number of references
'Summary': lambda x: '<br>'.join(
sorted(set(x), key=lambda summary: out_reference_df.loc[out_reference_df['Summary'] == summary, 'Start row of group'].min())
)
}).reset_index()
# Join the counts to existing_unique_topics_df
out_unique_topics_df = out_unique_topics_df.merge(reference_counts, how='left', on=["General Topic", "Subtopic", "Sentiment"]).sort_values("Response References", ascending=False)
unique_topics_df_out_path = output_folder + batch_file_path_details + "_unique_topics_" + model_choice_clean + "_temp_" + str(temperature) + ".csv"
return topic_table_out_path, reference_table_out_path, unique_topics_df_out_path, topic_with_response_df, markdown_table, out_reference_df, out_unique_topics_df, batch_file_path_details, is_error
def extract_topics(in_data_file,
file_data:pd.DataFrame,
existing_topics_table:pd.DataFrame,
existing_reference_df:pd.DataFrame,
existing_unique_topics_df:pd.DataFrame,
display_table:str,
file_name:str,
num_batches:int,
in_api_key:str,
temperature:float,
chosen_cols:List[str],
model_choice:str,
candidate_topics: GradioFileData = [],
latest_batch_completed:int=0,
out_message:List=[],
out_file_paths:List = [],
log_files_output_paths:List = [],
first_loop_state:bool=False,
whole_conversation_metadata_str:str="",
initial_table_prompt:str=initial_table_prompt,
prompt2:str=prompt2,
prompt3:str=prompt3,
system_prompt:str=system_prompt,
add_existing_topics_system_prompt:str=add_existing_topics_system_prompt,
add_existing_topics_prompt:str=add_existing_topics_prompt,
number_of_prompts_used:int=1,
batch_size:int=50,
context_textbox:str="",
time_taken:float = 0,
max_tokens:int=max_tokens,
model_name_map:dict=model_name_map,
max_time_for_loop:int=max_time_for_loop,
progress=Progress(track_tqdm=True)):
'''
Query an LLM (Gemini or AWS Anthropic-based) with up to three prompts about a table of open text data. Up to 'batch_size' rows will be queried at a time.
Parameters:
- in_data_file (gr.File): Gradio file object containing input data
- file_data (pd.DataFrame): Pandas dataframe containing the consultation response data.
- existing_topics_table (pd.DataFrame): Pandas dataframe containing the latest master topic table that has been iterated through batches.
- existing_reference_df (pd.DataFrame): Pandas dataframe containing the list of Response reference numbers alongside the derived topics and subtopics.
- existing_unique_topics_df (pd.DataFrame): Pandas dataframe containing the unique list of topics, subtopics, sentiment and summaries until this point.
- display_table (str): Table for display in markdown format.
- file_name (str): File name of the data file.
- num_batches (int): Number of batches required to go through all the response rows.
- in_api_key (str): The API key for authentication.
- temperature (float): The temperature parameter for the model.
- chosen_cols (List[str]): A list of chosen columns to process.
- candidate_topics (gr.FileData): A Gradio FileData object of existing candidate topics submitted by the user.
- model_choice (str): The choice of model to use.
- latest_batch_completed (int): The index of the latest file completed.
- out_message (list): A list to store output messages.
- out_file_paths (list): A list to store output file paths.
- log_files_output_paths (list): A list to store log file output paths.
- first_loop_state (bool): A flag indicating the first loop state.
- whole_conversation_metadata_str (str): A string to store whole conversation metadata.
- initial_table_prompt (str): The first prompt for the model.
- prompt2 (str): The second prompt for the model.
- prompt3 (str): The third prompt for the model.
- system_prompt (str): The system prompt for the model.
- add_existing_topics_system_prompt (str): The system prompt for the summary part of the model.
- add_existing_topics_prompt (str): The prompt for the model summary.
- number of requests (int): The number of prompts to send to the model.
- batch_size (int): The number of data rows to consider in each request.
- context_textbox (str, optional): A string giving some context to the consultation/task.
- time_taken (float, optional): The amount of time taken to process the responses up until this point.
- max_tokens (int): The maximum number of tokens for the model.
- model_name_map (dict, optional): A dictionary mapping full model name to shortened.
- max_time_for_loop (int, optional): The number of seconds maximum that the function should run for before breaking (to run again, this is to avoid timeouts with some AWS services if deployed there).
- progress (Progress): A progress tracker.
'''
tic = time.perf_counter()
model = ""
config = ""
final_time = 0.0
whole_conversation_metadata = []
is_error = False
#llama_system_prefix = "<|start_header_id|>system<|end_header_id|>\n" #"<start_of_turn>user\n"
#llama_system_suffix = "<|eot_id|>" #"<end_of_turn>\n<start_of_turn>model\n"
#llama_prefix = "<|start_header_id|>system<|end_header_id|>\nYou are an AI assistant that follows instruction extremely well. Help as much as you can.<|eot_id|><|start_header_id|>user<|end_header_id|>\n" #"<start_of_turn>user\n"
#llama_suffix = "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n" #"<end_of_turn>\n<start_of_turn>model\n"
#llama_prefix = "<|user|>\n" # This is for phi 3.5
#llama_suffix = "<|end|>\n<|assistant|>" # This is for phi 3.5
llama_prefix = "<start_of_turn>user\n"
llama_suffix = "<end_of_turn>\n<start_of_turn>model\n"
# Reset output files on each run:
# out_file_paths = []
# If you have a file input but no file data it hasn't yet been loaded. Load it here.
if file_data.empty:
print("No data table found, loading from file")
try:
print("in_data_file:", in_data_file)
in_colnames_drop, in_excel_sheets, file_name = put_columns_in_df(in_data_file)
print("in_colnames:", in_colnames_drop)
file_data, file_name, num_batches = load_in_data_file(in_data_file, chosen_cols, batch_size_default)
print("file_data loaded in:", file_data)
except:
# Check if files and text exist
out_message = "Please enter a data file to summarise."
print(out_message)
return out_message, existing_topics_table, existing_unique_topics_df, existing_reference_df, out_file_paths, out_file_paths, latest_batch_completed, log_files_output_paths, log_files_output_paths, whole_conversation_metadata_str, final_time, out_file_paths#, out_message
#model_choice_clean = replace_punctuation_with_underscore(model_choice)
model_choice_clean = model_name_map[model_choice]
# If this is the first time around, set variables to 0/blank
if first_loop_state==True:
if (latest_batch_completed == 999) | (latest_batch_completed == 0):
latest_batch_completed = 0
out_message = []
out_file_paths = []
print("model_choice_clean:", model_choice_clean)
#print("latest_batch_completed:", str(latest_batch_completed))
# If we have already redacted the last file, return the input out_message and file list to the relevant components
if latest_batch_completed >= num_batches:
print("Last batch reached, returning batch:", str(latest_batch_completed))
# Set to a very high number so as not to mess with subsequent file processing by the user
#latest_batch_completed = 999
toc = time.perf_counter()
final_time = (toc - tic) + time_taken
out_time = f"Everything finished in {final_time} seconds."
print(out_time)
print("All summaries completed. Creating outputs.")
model_choice_clean = model_name_map[model_choice]
# Example usage
in_column_cleaned = clean_column_name(chosen_cols, max_length=20)
# Need to reduce output file names as full length files may be too long
file_name = clean_column_name(file_name, max_length=30)
# Save outputs for each batch. If master file created, label file as master
file_path_details = f"{file_name}_col_{in_column_cleaned}"
# Save the new DataFrame to CSV
#topic_table_out_path = output_folder + batch_file_path_details + "_topic_table_" + model_choice_clean + "_temp_" + str(temperature) + ".csv"
reference_table_out_path = output_folder + file_path_details + "_final_reference_table_" + model_choice_clean + "_temp_" + str(temperature) + ".csv"
unique_topics_df_out_path = output_folder +file_path_details + "_final_unique_topics_" + model_choice_clean + "_temp_" + str(temperature) + ".csv"
# Write outputs to csv
## Topics with references
#new_topic_df.to_csv(topic_table_out_path, index=None)
#log_files_output_paths.append(topic_table_out_path)
## Reference table mapping response numbers to topics
existing_reference_df.to_csv(reference_table_out_path, index=None)
out_file_paths.append(reference_table_out_path)
## Unique topic list
existing_unique_topics_df.to_csv(unique_topics_df_out_path, index=None)
out_file_paths.append(unique_topics_df_out_path)
## Create a dataframe for missing response references:
# Assuming existing_reference_df and file_data are already defined
# Simplify table to just responses column and the Response reference number
simple_file = file_data[[chosen_cols]].reset_index(names="Reference")
simple_file["Reference"] = simple_file["Reference"].astype(int) + 1
simple_file = simple_file.rename(columns={chosen_cols: "Response"})
simple_file["Response"] = simple_file["Response"].str.strip()
# Step 1: Identify missing references
#print("simple_file:", simple_file)
missing_references = simple_file[~simple_file['Reference'].astype(str).isin(existing_reference_df['Response References'].astype(str).unique())]
# Step 2: Create a new DataFrame with the same columns as existing_reference_df
missing_df = pd.DataFrame(columns=existing_reference_df.columns)
# Step 3: Populate the new DataFrame
missing_df['Response References'] = missing_references['Reference']
missing_df = missing_df.fillna(np.nan) # Fill other columns with NA
# Display the new DataFrame
#print("missing_df:", missing_df)
missing_df_out_path = output_folder + file_path_details + "_missing_references_" + model_choice_clean + "_temp_" + str(temperature) + ".csv"
missing_df.to_csv(missing_df_out_path, index=None)
log_files_output_paths.append(missing_df_out_path)
out_file_paths = list(set(out_file_paths))
log_files_output_paths = list(set(log_files_output_paths))
print("out_file_paths:", out_file_paths)
#final_out_message = '\n'.join(out_message)
return display_table, existing_topics_table, existing_unique_topics_df, existing_reference_df, out_file_paths, out_file_paths, latest_batch_completed, log_files_output_paths, log_files_output_paths, whole_conversation_metadata_str, final_time, out_file_paths#, out_message
if num_batches > 0:
progress_measure = round(latest_batch_completed / num_batches, 1)
progress(progress_measure, desc="Querying large language model")
else:
progress(0.1, desc="Querying large language model")
# Load file
# If out message or out_file_paths are blank, change to a list so it can be appended to
if isinstance(out_message, str):
out_message = [out_message]
if not out_file_paths:
out_file_paths = []
if model_choice == "anthropic.claude-3-sonnet-20240229-v1:0" and file_data.shape[1] > 300:
out_message = "Your data has more than 300 rows, using the Sonnet model will be too expensive. Please choose the Haiku model instead."
print(out_message)
return out_message, existing_topics_table, existing_unique_topics_df, existing_reference_df, out_file_paths, out_file_paths, latest_batch_completed, log_files_output_paths, log_files_output_paths, whole_conversation_metadata_str, final_time, out_file_paths#, out_message
topics_loop_description = "Extracting topics from response batches (each batch of " + str(batch_size) + " responses)."
topics_loop = tqdm(range(latest_batch_completed, num_batches), desc = topics_loop_description, unit="batches remaining")
for i in topics_loop:
#for latest_batch_completed in range(num_batches):
reported_batch_no = latest_batch_completed + 1
print("Running query batch", str(reported_batch_no))
# Call the function to prepare the input table
simplified_csv_table_path, normalised_simple_markdown_table, start_row, end_row, simple_table_df = data_file_to_markdown_table(file_data, file_name, chosen_cols, output_folder, latest_batch_completed, batch_size)
log_files_output_paths.append(simplified_csv_table_path)
# Conversation history
conversation_history = []
print("normalised_simple_markdown_table:", normalised_simple_markdown_table)
# If the latest batch of responses contains at least one instance of text
if not simple_table_df.empty:
print("latest_batch_completed:", latest_batch_completed)
# If this is the second batch, the master table will refer back to the current master table when assigning topics to the new table. Also runs if there is an existing list of topics supplied by the user
if latest_batch_completed >= 1 or candidate_topics:
#print("normalised_simple_markdown_table:", normalised_simple_markdown_table)
# Prepare Gemini models before query
if model_choice in ["gemini-1.5-flash-002", "gemini-1.5-pro-002"]:
print("Using Gemini model:", model_choice)
model, config = construct_gemini_generative_model(in_api_key=in_api_key, temperature=temperature, model_choice=model_choice, system_prompt=add_existing_topics_system_prompt, max_tokens=max_tokens)
elif model_choice in ["anthropic.claude-3-haiku-20240307-v1:0", "anthropic.claude-3-sonnet-20240229-v1:0"]:
print("Using AWS Bedrock model:", model_choice)
else:
print("Using local model:", model_choice)
if candidate_topics:
# 'Zero shot topics' are those supplied by the user
max_topic_no = 120
zero_shot_topics = read_file(candidate_topics.name)
if zero_shot_topics.shape[1] == 1: # Check if there is only one column
zero_shot_topics_series = zero_shot_topics.iloc[:, 0].str.strip().str.lower().str.capitalize()
# Max 120 topics allowed
if len(zero_shot_topics_series) > max_topic_no:
print("Maximum", max_topic_no, "topics allowed to fit within large language model context limits.")
zero_shot_topics_series = zero_shot_topics_series.iloc[:max_topic_no]
zero_shot_topics_list = list(zero_shot_topics_series)
print("Zero shot topics are:", zero_shot_topics_list)
# Create the most up to date list of topics and subtopics.
# If there are candidate topics, but the existing_unique_topics_df hasn't yet been constructed, then create.
if existing_unique_topics_df.empty:
existing_unique_topics_df = pd.DataFrame(data={'General Topic':'', 'Subtopic':zero_shot_topics_list, 'Sentiment':''})
# This part concatenates all zero shot and new topics together, so that for the next prompt the LLM will have the full list available
elif not existing_unique_topics_df.empty:
zero_shot_topics_df = pd.DataFrame(data={'General Topic':'', 'Subtopic':zero_shot_topics_list, 'Sentiment':''})
existing_unique_topics_df = pd.concat([existing_unique_topics_df, zero_shot_topics_df]).drop_duplicates("Subtopic")
zero_shot_topics_list_str = zero_shot_topics_list
elif set(["General Topic", "Subtopic", "Sentiment"]).issubset(zero_shot_topics.columns):
# Max 120 topics allowed
if zero_shot_topics.shape[0] > max_topic_no:
print("Maximum", max_topic_no, "topics allowed to fit within large language model context limits.")
zero_shot_topics = zero_shot_topics.iloc[:max_topic_no,:]
if existing_unique_topics_df.empty:
existing_unique_topics_df = pd.DataFrame(data={'General Topic':zero_shot_topics.iloc[:,0], 'Subtopic':zero_shot_topics.iloc[:,1], 'Sentiment':zero_shot_topics.iloc[:,2]})
#existing_unique_topics_df.to_csv(output_folder + "Existing topics with zero shot dropped.csv", index = None)
#all_topic_tables_df_merged = existing_unique_topics_df
existing_unique_topics_df["Response References"] = ""
unique_topics_markdown = existing_unique_topics_df[["General Topic", "Subtopic", "Sentiment"]].drop_duplicates(["General Topic", "Subtopic", "Sentiment"]).to_markdown(index=False)
#existing_unique_topics_df.to_csv(output_folder + f"{file_name}_master_all_topic_tables_df_merged_" + model_choice_clean + "_temp_" + str(temperature) + "_batch_" + str(latest_batch_completed) + ".csv", index=None)
# Format the summary prompt with the response table and topics
formatted_summary_prompt = add_existing_topics_prompt.format(response_table=normalised_simple_markdown_table, topics=unique_topics_markdown, consultation_context=context_textbox, column_name=chosen_cols)
if model_choice == "gemma_2b_it_local":
# add_existing_topics_system_prompt = llama_system_prefix + add_existing_topics_system_prompt + llama_system_suffix
# formatted_initial_table_prompt = llama_prefix + formatted_summary_prompt + llama_suffix
formatted_initial_table_prompt = llama_prefix + add_existing_topics_system_prompt + formatted_summary_prompt + llama_suffix
# Define the output file path for the formatted prompt
formatted_prompt_output_path = output_folder + file_name + "_full_prompt_" + model_choice_clean + "_temp_" + str(temperature) + ".txt"
# Write the formatted prompt to the specified file
try:
with open(formatted_prompt_output_path, "w", encoding='utf-8', errors='replace') as f:
f.write(formatted_summary_prompt)
except Exception as e:
print(f"Error writing prompt to file {formatted_prompt_output_path}: {e}")
summary_prompt_list = [formatted_summary_prompt]
# print("master_summary_prompt_list:", summary_prompt_list[0])
summary_conversation_history = []
summary_whole_conversation = []
# Process requests to large language model
master_summary_response, summary_conversation_history, whole_summary_conversation, whole_conversation_metadata = process_requests(summary_prompt_list, add_existing_topics_system_prompt, summary_conversation_history, summary_whole_conversation, whole_conversation_metadata, model, config, model_choice, temperature, reported_batch_no, master = True)
# print("master_summary_response:", master_summary_response[-1].text)
# print("Whole conversation metadata:", whole_conversation_metadata)
topic_table_out_path, reference_table_out_path, unique_topics_df_out_path, new_topic_df, new_markdown_table, new_reference_df, new_unique_topics_df, master_batch_out_file_part, is_error = write_llm_output_and_logs(master_summary_response, whole_summary_conversation, whole_conversation_metadata, file_name, latest_batch_completed, start_row, end_row, model_choice_clean, temperature, log_files_output_paths, existing_reference_df, existing_unique_topics_df, batch_size, chosen_cols, first_run=False)
# If error in table parsing, leave function
if is_error == True:
final_message_out = "Could not complete summary, error in LLM output."
display_table, new_topic_df, new_unique_topics_df, new_reference_df, out_file_paths, out_file_paths, latest_batch_completed, log_files_output_paths, log_files_output_paths, whole_conversation_metadata_str, final_time, out_file_paths#, final_message_out
# Write outputs to csv
## Topics with references
new_topic_df.to_csv(topic_table_out_path, index=None)
log_files_output_paths.append(topic_table_out_path)
## Reference table mapping response numbers to topics
new_reference_df.to_csv(reference_table_out_path, index=None)
out_file_paths.append(reference_table_out_path)
## Unique topic list
new_unique_topics_df = pd.concat([new_unique_topics_df, existing_unique_topics_df]).drop_duplicates('Subtopic')
new_unique_topics_df.to_csv(unique_topics_df_out_path, index=None)
out_file_paths.append(unique_topics_df_out_path)
#all_topic_tables_df.append(new_topic_df)
#all_markdown_topic_tables.append(new_markdown_table)
#display_table = master_summary_response[-1].text
# Show unique topics alongside document counts as output
display_table = new_unique_topics_df.to_markdown(index=False)
#whole_conversation_metadata.append(whole_conversation_metadata_str)
whole_conversation_metadata_str = ' '.join(whole_conversation_metadata)
# Write final output to text file also
#try:
# new_final_table_output_path = output_folder + master_batch_out_file_part + "_full_final_response_" + #model_choice_clean + "_temp_" + str(temperature) + ".txt"
# with open(new_final_table_output_path, "w", encoding='utf-8', errors='replace') as f:
# f.write(display_table)
# log_files_output_paths.append(new_final_table_output_path)
#except Exception as e:
# print(e)
latest_batch_number_string = "batch_" + str(latest_batch_completed - 1)
out_file_paths = [col for col in out_file_paths if latest_batch_number_string in col]
log_files_output_paths = [col for col in log_files_output_paths if latest_batch_number_string in col]
print("out_file_paths at end of loop:", out_file_paths)
# If this is the first batch, run this
else:
#system_prompt = system_prompt + normalised_simple_markdown_table
# Prepare Gemini models before query
if model_choice in ["gemini-1.5-flash-002", "gemini-1.5-pro-002"]:
print("Using Gemini model:", model_choice)
model, config = construct_gemini_generative_model(in_api_key=in_api_key, temperature=temperature, model_choice=model_choice, system_prompt=system_prompt, max_tokens=max_tokens)
else:
print("Using AWS Bedrock model:", model_choice)
formatted_initial_table_prompt = initial_table_prompt.format(response_table=normalised_simple_markdown_table, consultation_context=context_textbox, column_name=chosen_cols)
if prompt2: formatted_prompt2 = prompt2.format(response_table=normalised_simple_markdown_table)
else: formatted_prompt2 = prompt2
if prompt3: formatted_prompt3 = prompt3.format(response_table=normalised_simple_markdown_table)
else: formatted_prompt3 = prompt3
if model_choice == "gemma_2b_it_local":
# system_prompt = llama_system_prefix + system_prompt + llama_system_suffix
# formatted_initial_table_prompt = llama_prefix + formatted_initial_table_prompt + llama_suffix
# formatted_prompt2 = llama_prefix + formatted_prompt2 + llama_suffix
# formatted_prompt3 = llama_prefix + formatted_prompt3 + llama_suffix
formatted_initial_table_prompt = llama_prefix + system_prompt + formatted_initial_table_prompt + llama_suffix
formatted_prompt2 = llama_prefix + system_prompt + formatted_prompt2 + llama_suffix
formatted_prompt3 = llama_prefix + system_prompt + formatted_prompt3 + llama_suffix
batch_prompts = [formatted_initial_table_prompt, formatted_prompt2, formatted_prompt3][:number_of_prompts_used] # Adjust this list to send fewer requests
whole_conversation = [system_prompt]
# Process requests to large language model
responses, conversation_history, whole_conversation, whole_conversation_metadata = process_requests(batch_prompts, system_prompt, conversation_history, whole_conversation, whole_conversation_metadata, model, config, model_choice, temperature, reported_batch_no)
# print("Whole conversation metadata before:", whole_conversation_metadata)
# print("responses:", responses[-1].text)
# print("Whole conversation metadata:", whole_conversation_metadata)
topic_table_out_path, reference_table_out_path, unique_topics_df_out_path, topic_table_df, markdown_table, reference_df, new_unique_topics_df, batch_file_path_details, is_error = write_llm_output_and_logs(responses, whole_conversation, whole_conversation_metadata, file_name, latest_batch_completed, start_row, end_row, model_choice_clean, temperature, log_files_output_paths, existing_reference_df, existing_unique_topics_df, batch_size, chosen_cols, first_run=True)
# If error in table parsing, leave function
if is_error == True:
display_table, new_topic_df, new_unique_topics_df, new_reference_df, out_file_paths, out_file_paths, latest_batch_completed, log_files_output_paths, log_files_output_paths, whole_conversation_metadata_str, final_time, out_file_paths#, final_message_out
#all_topic_tables_df.append(topic_table_df)
topic_table_df.to_csv(topic_table_out_path, index=None)
out_file_paths.append(topic_table_out_path)
reference_df.to_csv(reference_table_out_path, index=None)
out_file_paths.append(reference_table_out_path)
## Unique topic list
new_unique_topics_df = pd.concat([new_unique_topics_df, existing_unique_topics_df]).drop_duplicates('Subtopic')
new_unique_topics_df.to_csv(unique_topics_df_out_path, index=None)
out_file_paths.append(unique_topics_df_out_path)
#all_markdown_topic_tables.append(markdown_table)
whole_conversation_metadata.append(whole_conversation_metadata_str)
whole_conversation_metadata_str = '. '.join(whole_conversation_metadata)
# Write final output to text file also
try:
final_table_output_path = output_folder + batch_file_path_details + "_full_final_response_" + model_choice_clean + "_temp_" + str(temperature) + ".txt"
if "choices" in responses[-1]:
with open(final_table_output_path, "w", encoding='utf-8', errors='replace') as f:
f.write(responses[-1]["choices"][0]['text'])
display_table =responses[-1]["choices"][0]['text']
else:
with open(final_table_output_path, "w", encoding='utf-8', errors='replace') as f:
f.write(responses[-1].text)
display_table = responses[-1].text
log_files_output_paths.append(final_table_output_path)
except Exception as e:
print(e)
new_topic_df = topic_table_df
new_reference_df = reference_df
else:
print("Current batch of responses contains no text, moving onto next. Batch number:", latest_batch_completed, ". Start row:", start_row, ". End row:", end_row)
# Increase latest file completed count unless we are at the last file
if latest_batch_completed != num_batches:
print("Completed batch number:", str(latest_batch_completed))
latest_batch_completed += 1
toc = time.perf_counter()
final_time = toc - tic
if final_time > max_time_for_loop:
print("Max time reached, breaking loop.")
topics_loop.close()
tqdm._instances.clear()
break
# Overwrite 'existing' elements to add new tables
existing_reference_df = new_reference_df.dropna(how='all')
existing_unique_topics_df = new_unique_topics_df.dropna(how='all')
existing_topics_table = new_topic_df.dropna(how='all')
out_time = f"in {final_time:0.1f} seconds."
print(out_time)
out_message.append('All queries successfully completed in')
final_message_out = '\n'.join(out_message)
final_message_out = final_message_out + " " + out_time
final_message_out = final_message_out + "\n\nGo to to the LLM settings tab to see redaction logs. Please give feedback on the results below to help improve this app."
return display_table, existing_topics_table, existing_unique_topics_df, existing_reference_df, out_file_paths, out_file_paths, latest_batch_completed, log_files_output_paths, log_files_output_paths, whole_conversation_metadata_str, final_time, out_file_paths #, final_message_out
# SUMMARISATION FUNCTIONS
def deduplicate_categories(category_series: pd.Series, join_series:pd.Series, threshold: float = 80) -> pd.DataFrame:
"""
Deduplicates similar category names in a pandas Series based on a fuzzy matching threshold.
Parameters:
category_series (pd.Series): Series containing category names to deduplicate.
join_series (pd.Series): Additional series used for joining back to original results
threshold (float): Similarity threshold for considering two strings as duplicates.
Returns:
pd.DataFrame: DataFrame with columns ['old_category', 'deduplicated_category'].
"""
# Initialize the result dictionary
deduplication_map = {}
# Iterate through each category in the series
for category in category_series.unique():
# Skip if the category is already processed
if category in deduplication_map:
continue
# Find close matches to the current category, excluding the current category itself
matches = process.extract(category, [cat for cat in category_series.unique() if cat != category], scorer=fuzz.token_set_ratio, score_cutoff=threshold)
# Select the match with the highest score
if matches: # Check if there are any matches
best_match = max(matches, key=lambda x: x[1]) # Get the match with the highest score
match, score, _ = best_match # Unpack the best match
#print("Best match:", match, "score:", score)
deduplication_map[match] = category # Map the best match to the current category
# Create the result DataFrame
result_df = pd.DataFrame({
'old_category': category_series + " | " + join_series,
'deduplicated_category': category_series.map(deduplication_map)
})
return result_df
def sample_reference_table_summaries(reference_df:pd.DataFrame,
unique_topics_df:pd.DataFrame,
random_seed:int,
deduplicate_topics:str="Yes",
no_of_sampled_summaries:int=150):
all_summaries = pd.DataFrame()
# Remove duplicate topics
if deduplicate_topics == "Yes":
# Run through this three times to try to get all duplicate topics
for i in range(0, 3):
print("Run:", i)
# First, combine duplicate topics in reference_df
reference_df["old_category"] = reference_df["Subtopic"] + " | " + reference_df["Sentiment"]
reference_df_unique = reference_df.drop_duplicates("old_category")
reference_df_unique[["old_category"]].to_csv(output_folder + "reference_df_unique_old_categories_" + str(i) + ".csv", index=None)
# Deduplicate categories within each sentiment group
deduplicated_topic_map_df = reference_df_unique.groupby("Sentiment").apply(
lambda group: deduplicate_categories(group["Subtopic"], group["Sentiment"], threshold=80)
).reset_index(drop=True) # Reset index after groupby
if deduplicated_topic_map_df['deduplicated_category'].isnull().all():
# Check if 'deduplicated_category' contains any values
print("No deduplicated categories found, skipping the following code.")
else:
# Join deduplicated columns back to original df
# Remove rows where 'deduplicated_category' is blank or NaN
deduplicated_topic_map_df = deduplicated_topic_map_df.loc[(deduplicated_topic_map_df['deduplicated_category'].str.strip() != '') & ~(deduplicated_topic_map_df['deduplicated_category'].isnull()), :]
#deduplicated_topic_map_df.to_csv(output_folder + "deduplicated_topic_map_df_" + str(i) + ".csv", index=None)
reference_df = reference_df.merge(deduplicated_topic_map_df, on="old_category", how="left")
reference_df.rename(columns={"Subtopic": "Subtopic_old", "Sentiment": "Sentiment_old"}, inplace=True)
# Extract subtopic and sentiment from deduplicated_category
reference_df["Subtopic"] = reference_df["deduplicated_category"].str.extract(r'^(.*?) \|')[0] # Extract subtopic
reference_df["Sentiment"] = reference_df["deduplicated_category"].str.extract(r'\| (.*)$')[0] # Extract sentiment
# Combine with old values to ensure no data is lost
reference_df["Subtopic"] = reference_df["deduplicated_category"].combine_first(reference_df["Subtopic_old"])
reference_df["Sentiment"] = reference_df["Sentiment"].combine_first(reference_df["Sentiment_old"])
#reference_df.to_csv(output_folder + "reference_table_after_dedup.csv", index=None)
reference_df.drop(['old_category', 'deduplicated_category', "Subtopic_old", "Sentiment_old"], axis=1, inplace=True, errors="ignore")
reference_df = reference_df[["Response References", "General Topic", "Subtopic", "Sentiment", "Summary", "Start row of group"]]
reference_df["General Topic"] = reference_df["General Topic"].str.lower().str.capitalize()
reference_df["Subtopic"] = reference_df["Subtopic"].str.lower().str.capitalize()
reference_df["Sentiment"] = reference_df["Sentiment"].str.lower().str.capitalize()
# Remake unique_topics_df based on new reference_df
unique_topics_df = create_unique_table_df_from_reference_table(reference_df)
reference_df_grouped = reference_df.groupby(["General Topic", "Subtopic", "Sentiment"])
for group_keys, reference_df_group in reference_df_grouped:
#print(f"Group: {group_keys}")
#print(f"Data: {reference_df_group}")
if len(reference_df_group["General Topic"]) > 1:
filtered_reference_df = reference_df_group.reset_index()
filtered_reference_df_unique = filtered_reference_df.drop_duplicates(["General Topic", "Subtopic", "Sentiment", "Summary"])
# Sample n of the unique topic summaries. To limit the length of the text going into the summarisation tool
filtered_reference_df_unique_sampled = filtered_reference_df_unique.sample(min(no_of_sampled_summaries, len(filtered_reference_df_unique)), random_state=random_seed)
#topic_summary_table_markdown = filtered_reference_df_unique_sampled.to_markdown(index=False)
#print(filtered_reference_df_unique_sampled)
all_summaries = pd.concat([all_summaries, filtered_reference_df_unique_sampled])
#all_summaries.to_csv(output_folder + "all_summaries.csv", index=None)
summarised_references = all_summaries.groupby(["General Topic", "Subtopic", "Sentiment"]).agg({
'Response References': 'size', # Count the number of references
'Summary': lambda x: '\n'.join([s.split(': ', 1)[1] for s in x if ': ' in s]) # Join substrings after ': '
}).reset_index()
summarised_references = summarised_references.loc[(summarised_references["Sentiment"] != "Not Mentioned") & (summarised_references["Response References"] > 1)]
#summarised_references.to_csv(output_folder + "summarised_references.csv", index=None)
summarised_references_markdown = summarised_references.to_markdown(index=False)
return summarised_references, summarised_references_markdown, reference_df, unique_topics_df
def summarise_output_topics_query(model_choice:str, in_api_key:str, temperature:float, formatted_summary_prompt:str, summarise_topic_descriptions_system_prompt:str):
conversation_history = []
whole_conversation_metadata = []
# Prepare Gemini models before query
if model_choice in ["gemini-1.5-flash-002", "gemini-1.5-pro-002"]:
print("Using Gemini model:", model_choice)
model, config = construct_gemini_generative_model(in_api_key=in_api_key, temperature=temperature, model_choice=model_choice, system_prompt=system_prompt, max_tokens=max_tokens)
else:
print("Using AWS Bedrock model:", model_choice)
model = model_choice
config = {}
whole_conversation = [summarise_topic_descriptions_system_prompt]
# Process requests to large language model
responses, conversation_history, whole_conversation, whole_conversation_metadata = process_requests(formatted_summary_prompt, system_prompt, conversation_history, whole_conversation, whole_conversation_metadata, model, config, model_choice, temperature)
print("Finished summary query")
# Extract text from the `responses` list
if "choices" in responses[-1]:
response_texts = [resp["choices"][0]['text'] for resp in responses]
else:
response_texts = [resp.text for resp in responses]
latest_response_text = response_texts[-1]
#print("latest_response_text:", latest_response_text)
#print("Whole conversation metadata:", whole_conversation_metadata)
return latest_response_text, conversation_history, whole_conversation_metadata
def summarise_output_topics(summarised_references:pd.DataFrame,
unique_table_df:pd.DataFrame,
reference_table_df:pd.DataFrame,
model_choice:str,
in_api_key:str,
topic_summary_table_markdown:str,
temperature:float,
table_file_name:str,
summarised_outputs:list = [],
latest_summary_completed:int = 0,
out_metadata_str:str = "",
output_files:list = [],
summarise_topic_descriptions_prompt:str=summarise_topic_descriptions_prompt, summarise_topic_descriptions_system_prompt:str=summarise_topic_descriptions_system_prompt,
progress=gr.Progress(track_tqdm=True)):
'''
Create better summaries of the raw batch-level summaries created in the first run of the model.
'''
out_metadata = []
print("In summarise_output_topics function.")
all_summaries = summarised_references["Summary"].tolist()
length_all_summaries = len(all_summaries)
#print("latest_summary_completed:", latest_summary_completed)
#print("length_all_summaries:", length_all_summaries)
if latest_summary_completed >= length_all_summaries:
print("All summaries completed. Creating outputs.")
model_choice_clean = model_name_map[model_choice]
file_name = re.search(r'(.*?)(?:_batch_|_col_)', table_file_name).group(1) if re.search(r'(.*?)(?:_batch_|_col_)', table_file_name) else table_file_name
latest_batch_completed = int(re.search(r'batch_(\d+)_', table_file_name).group(1)) if 'batch_' in table_file_name else ""
batch_size_number = int(re.search(r'size_(\d+)_', table_file_name).group(1)) if 'size_' in table_file_name else ""
in_column_cleaned = re.search(r'col_(.*?)_reference', table_file_name).group(1) if 'col_' in table_file_name else ""
# Save outputs for each batch. If master file created, label file as master
if latest_batch_completed:
batch_file_path_details = f"{file_name}_batch_{latest_batch_completed}_size_{batch_size_number}_col_{in_column_cleaned}"
else:
batch_file_path_details = f"{file_name}_col_{in_column_cleaned}"
summarised_references["Revised summary"] = summarised_outputs
join_cols = ["General Topic", "Subtopic", "Sentiment"]
join_plus_summary_cols = ["General Topic", "Subtopic", "Sentiment", "Revised summary"]
summarised_references_j = summarised_references[join_plus_summary_cols].drop_duplicates(join_plus_summary_cols)
unique_table_df_revised = unique_table_df.merge(summarised_references_j, on = join_cols, how = "left")
# If no new summary is available, keep the original
unique_table_df_revised["Revised summary"] = unique_table_df_revised["Revised summary"].combine_first(unique_table_df_revised["Summary"])
unique_table_df_revised = unique_table_df_revised[["General Topic", "Subtopic", "Sentiment", "Response References", "Revised summary"]]
reference_table_df_revised = reference_table_df.merge(summarised_references_j, on = join_cols, how = "left")
# If no new summary is available, keep the original
reference_table_df_revised["Revised summary"] = reference_table_df_revised["Revised summary"].combine_first(reference_table_df_revised["Summary"])
reference_table_df_revised = reference_table_df_revised.drop("Summary", axis=1)
# Remove topics that are tagged as 'Not Mentioned'
unique_table_df_revised = unique_table_df_revised.loc[unique_table_df_revised["Sentiment"] != "Not Mentioned", :]
reference_table_df_revised = reference_table_df_revised.loc[reference_table_df_revised["Sentiment"] != "Not Mentioned", :]
unique_table_df_revised_path = output_folder + batch_file_path_details + "_summarised_unique_topic_table_" + model_choice_clean + ".csv"
unique_table_df_revised.to_csv(unique_table_df_revised_path, index = None)
reference_table_df_revised_path = output_folder + batch_file_path_details + "_summarised_reference_table_" + model_choice_clean + ".csv"
reference_table_df_revised.to_csv(reference_table_df_revised_path, index = None)
output_files.extend([reference_table_df_revised_path, unique_table_df_revised_path])
return summarised_references, unique_table_df_revised, reference_table_df_revised, output_files, summarised_outputs, latest_summary_completed, out_metadata_str
tic = time.perf_counter()
print("Starting with:", latest_summary_completed)
print("Last summary number:", length_all_summaries)
summary_loop_description = "Creating summaries. " + str(latest_summary_completed) + " summaries completed so far."
summary_loop = tqdm(range(latest_summary_completed, length_all_summaries), desc="Creating summaries", unit="summaries")
for summary_no in summary_loop:
print("Current summary number is:", summary_no)
summary_text = all_summaries[summary_no]
print("summary_text:", summary_text)
formatted_summary_prompt = [summarise_topic_descriptions_prompt.format(summaries=summary_text)]
try:
response, conversation_history, metadata = summarise_output_topics_query(model_choice, in_api_key, temperature, formatted_summary_prompt, summarise_topic_descriptions_system_prompt)
summarised_output = response
summarised_output = re.sub(r'\n{2,}', '\n', summarised_output) # Replace multiple line breaks with a single line break
summarised_output = re.sub(r'^\n{1,}', '', summarised_output) # Remove one or more line breaks at the start
except Exception as e:
print(e)
summarised_output = ""
summarised_outputs.append(summarised_output)
out_metadata.extend(metadata)
out_metadata_str = '. '.join(out_metadata)
latest_summary_completed += 1
# Check if beyond max time allowed for processing and break if necessary
toc = time.perf_counter()
time_taken = tic - toc
if time_taken > max_time_for_loop:
print("Time taken for loop is greater than maximum time allowed.")
summary_loop.close()
tqdm._instances.clear()
break
# If all summaries completeed
if latest_summary_completed >= length_all_summaries:
print("At last summary.")
return summarised_references, unique_table_df, reference_table_df, output_files, summarised_outputs, latest_summary_completed, out_metadata_str
|