Spaces:
Runtime error
Runtime error
File size: 29,885 Bytes
59c1c22 63067b7 b7f4700 0a726d1 75d1651 59c1c22 b7f4700 59c1c22 b0e08c8 59c1c22 854a758 59c1c22 1f0d087 b7f4700 0a726d1 b0e08c8 0a726d1 59c1c22 75d1651 59c1c22 75d1651 59c1c22 75d1651 59c1c22 75d1651 59c1c22 75d1651 854a758 59c1c22 f0b3bbc 59c1c22 f0b3bbc 59c1c22 f8f34c2 59c1c22 74d2271 59c1c22 0a726d1 59c1c22 74d2271 854a758 59c1c22 74d2271 71fcefe 59c1c22 71fcefe 59c1c22 74d2271 59c1c22 b50798a 75d1651 59c1c22 b9301bd 59c1c22 74d2271 59c1c22 75d1651 59c1c22 75d1651 59c1c22 75d1651 59c1c22 75d1651 854a758 64ffd3a 854a758 75d1651 b50798a 854a758 64ffd3a 854a758 75d1651 59c1c22 75d1651 59c1c22 75d1651 59c1c22 854a758 59c1c22 854a758 59c1c22 854a758 75d1651 59c1c22 854a758 59c1c22 b7f4700 854a758 59c1c22 75d1651 d4f58e6 59c1c22 d4f58e6 59c1c22 854a758 59c1c22 75d1651 59c1c22 75d1651 59c1c22 b9301bd 75d1651 71fcefe b9301bd 74d2271 b0e08c8 59c1c22 b9301bd 75d1651 b9301bd 75d1651 b9301bd 59c1c22 854a758 75d1651 854a758 59c1c22 f8f34c2 75d1651 59c1c22 75d1651 59c1c22 f8f34c2 75d1651 f8f34c2 59c1c22 b7f4700 59c1c22 75d1651 59c1c22 75d1651 59c1c22 75d1651 59c1c22 71fcefe 59c1c22 71fcefe 75d1651 59c1c22 c978ec5 59c1c22 c978ec5 1f0d087 c978ec5 b7f4700 c978ec5 c79d667 59c1c22 c79d667 59c1c22 c79d667 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
import os
import socket
import spaces
from tools.helper_functions import ensure_output_folder_exists, add_folder_to_path, put_columns_in_df, get_connection_params, output_folder, get_or_create_env_var, reveal_feedback_buttons, wipe_logs, model_full_names, view_table, empty_output_vars_extract_topics, empty_output_vars_summarise, RUN_LOCAL_MODEL
from tools.aws_functions import upload_file_to_s3, RUN_AWS_FUNCTIONS
from tools.llm_api_call import extract_topics, load_in_data_file, load_in_previous_data_files, sample_reference_table_summaries, summarise_output_topics, batch_size_default, deduplicate_topics, modify_existing_output_tables
from tools.auth import authenticate_user
from tools.prompts import initial_table_prompt, prompt2, prompt3, system_prompt, add_existing_topics_system_prompt, add_existing_topics_prompt
#from tools.aws_functions import load_data_from_aws
import gradio as gr
import pandas as pd
from datetime import datetime
today_rev = datetime.now().strftime("%Y%m%d")
ensure_output_folder_exists()
host_name = socket.gethostname()
# print("host_name is:", host_name)
access_logs_data_folder = 'logs/' + today_rev + '/' + host_name + '/'
feedback_data_folder = 'feedback/' + today_rev + '/' + host_name + '/'
usage_data_folder = 'usage/' + today_rev + '/' + host_name + '/'
file_input_height = 150
print("RUN_LOCAL_MODEL is:", RUN_LOCAL_MODEL)
if RUN_LOCAL_MODEL == "1":
default_model_choice = "gemma_2b_it_local"
elif RUN_AWS_FUNCTIONS == "1":
default_model_choice = "anthropic.claude-3-haiku-20240307-v1:0"
else:
default_model_choice = "gemini-2.0-flash"
# Create the gradio interface
app = gr.Blocks(theme = gr.themes.Base())
with app:
###
# STATE VARIABLES
###
text_output_file_list_state = gr.State([])
text_output_modify_file_list_state = gr.State([])
log_files_output_list_state = gr.State([])
first_loop_state = gr.State(True)
second_loop_state = gr.State(False)
modified_unique_table_change_bool = gr.State(True) # This boolean is used to flag whether a file upload should change just the modified unique table object on the second tab
file_data_state = gr.Dataframe(value=pd.DataFrame(), headers=None, col_count=0, row_count = (0, "dynamic"), label="file_data_state", visible=False, type="pandas")
master_topic_df_state = gr.Dataframe(value=pd.DataFrame(), headers=None, col_count=0, row_count = (0, "dynamic"), label="master_topic_df_state", visible=False, type="pandas")
master_unique_topics_df_state = gr.Dataframe(value=pd.DataFrame(), headers=None, col_count=0, row_count = (0, "dynamic"), label="master_unique_topics_df_state", visible=False, type="pandas")
master_reference_df_state = gr.Dataframe(value=pd.DataFrame(), headers=None, col_count=0, row_count = (0, "dynamic"), label="master_reference_df_state", visible=False, type="pandas")
master_modify_unique_topics_df_state = gr.Dataframe(value=pd.DataFrame(), headers=None, col_count=0, row_count = (0, "dynamic"), label="master_modify_unique_topics_df_state", visible=False, type="pandas")
master_modify_reference_df_state = gr.Dataframe(value=pd.DataFrame(), headers=None, col_count=0, row_count = (0, "dynamic"), label="master_modify_reference_df_state", visible=False, type="pandas")
session_hash_state = gr.State()
s3_output_folder_state = gr.State()
# Logging state
log_file_name = 'log.csv'
access_logs_state = gr.State(access_logs_data_folder + log_file_name)
access_s3_logs_loc_state = gr.State(access_logs_data_folder)
usage_logs_state = gr.State(usage_data_folder + log_file_name)
usage_s3_logs_loc_state = gr.State(usage_data_folder)
feedback_logs_state = gr.State(feedback_data_folder + log_file_name)
feedback_s3_logs_loc_state = gr.State(feedback_data_folder)
# Summary state objects
summary_reference_table_sample_state = gr.Dataframe(value=pd.DataFrame(), headers=None, col_count=0, row_count = (0, "dynamic"), label="summary_reference_table_sample_state", visible=False, type="pandas")
master_reference_df_revised_summaries_state = gr.Dataframe(value=pd.DataFrame(), headers=None, col_count=0, row_count = (0, "dynamic"), label="master_reference_df_revised_summaries_state", visible=False, type="pandas")
master_unique_topics_df_revised_summaries_state = gr.Dataframe(value=pd.DataFrame(), headers=None, col_count=0, row_count = (0, "dynamic"), label="master_unique_topics_df_revised_summaries_state", visible=False, type="pandas")
summarised_references_markdown = gr.Markdown("", visible=False)
summarised_outputs_list = gr.Dropdown(value=[], choices=[], visible=False, label="List of summarised outputs", allow_custom_value=True)
latest_summary_completed_num = gr.Number(0, visible=False)
reference_data_file_name_textbox = gr.Textbox(label = "Reference data file name", value="", visible=False)
unique_topics_table_file_name_textbox = gr.Textbox(label="Unique topics data file name textbox", visible=False)
###
# UI LAYOUT
###
gr.Markdown(
"""# Large language model topic modelling
Extract topics and summarise outputs using Large Language Models (LLMs, Gemma 2B instruct if local, Gemini Flash/Pro, or Claude 3 through AWS Bedrock if running on AWS). The app will query the LLM with batches of responses to produce summary tables, which are then compared iteratively to output a table with the general topics, subtopics, topic sentiment, and relevant text rows related to them. The prompts are designed for topic modelling public consultations, but they can be adapted to different contexts (see the LLM settings tab to modify).
Instructions on use can be found in the README.md file. Try it out with this [dummy development consultation dataset](https://huggingface.co/datasets/seanpedrickcase/dummy_development_consultation), which you can also try with [zero-shot topics](https://huggingface.co/datasets/seanpedrickcase/dummy_development_consultation/blob/main/example_zero_shot.csv), or this [dummy case notes dataset](https://huggingface.co/datasets/seanpedrickcase/dummy_case_notes).
You can use an AWS Bedrock model (Claude 3, paid), or Gemini (a free API, but with strict limits for the Pro model). Due to the strict API limits for the best model (Pro 1.5), the use of Gemini requires an API key. To set up your own Gemini API key, go [here](https://aistudio.google.com/app/u/1/plan_information).
NOTE: that **API calls to Gemini are not considered secure**, so please only submit redacted, non-sensitive tabular files to this source. Also, large language models are not 100% accurate and may produce biased or harmful outputs. All outputs from this app **absolutely need to be checked by a human** to check for harmful outputs, hallucinations, and accuracy.""")
with gr.Tab(label="Extract topics"):
gr.Markdown(
"""
### Choose a tabular data file (xlsx or csv) of open text to extract topics from.
"""
)
with gr.Row():
model_choice = gr.Dropdown(value = default_model_choice, choices = model_full_names, label="LLM model to use", multiselect=False)
in_api_key = gr.Textbox(value = "", label="Enter Gemini API key (only if using Google API models)", lines=1, type="password")
with gr.Accordion("Upload xlsx or csv file", open = True):
in_data_files = gr.File(height=file_input_height, label="Choose Excel or csv files", file_count= "multiple", file_types=['.xlsx', '.xls', '.csv', '.parquet', '.csv.gz'])
in_excel_sheets = gr.Dropdown(choices=["Choose Excel sheet"], multiselect = False, label="Select the Excel sheet.", visible=False, allow_custom_value=True)
in_colnames = gr.Dropdown(choices=["Choose column with responses"], multiselect = False, label="Select the open text column of interest. In an Excel file, this shows columns across all sheets.", allow_custom_value=True, interactive=True)
with gr.Accordion("I have my own list of topics (zero shot topic modelling).", open = False):
candidate_topics = gr.File(height=file_input_height, label="Input topics from file (csv). File should have at least one column with a header, and all topic names below this. Using the headers 'General Topic' and/or 'Subtopic' will allow for these columns to be suggested to the model.")
force_zero_shot_radio = gr.Radio(label="Force responses into zero shot topics", value="No", choices=["Yes", "No"])
context_textbox = gr.Textbox(label="Write up to one sentence giving context to the large language model for your task (e.g. 'Consultation for the construction of flats on Main Street')")
sentiment_checkbox = gr.Radio(label="Choose sentiment categories to split responses", value="Negative, Neutral, or Positive", choices=["Negative, Neutral, or Positive", "Negative or Positive", "Do not assess sentiment"])
extract_topics_btn = gr.Button("Extract topics", variant="primary")
topic_extraction_output_files = gr.File(height=file_input_height, label="Output files")
display_topic_table_markdown = gr.Markdown(value="### Language model response will appear here", show_copy_button=True)
latest_batch_completed = gr.Number(value=0, label="Number of files prepared", interactive=False, visible=False)
# Duplicate version of the above variable for when you don't want to initiate the summarisation loop
latest_batch_completed_no_loop = gr.Number(value=0, label="Number of files prepared", interactive=False, visible=False)
data_feedback_title = gr.Markdown(value="## Please give feedback", visible=False)
data_feedback_radio = gr.Radio(label="Please give some feedback about the results of the topic extraction.",
choices=["The results were good", "The results were not good"], visible=False)
data_further_details_text = gr.Textbox(label="Please give more detailed feedback about the results:", visible=False)
data_submit_feedback_btn = gr.Button(value="Submit feedback", visible=False)
with gr.Row():
s3_logs_output_textbox = gr.Textbox(label="Feedback submission logs", visible=False)
with gr.Tab(label="Modify, deduplicate, and summarise topic outputs"):
gr.Markdown(
"""
Load in previously completed Extract Topics output files ('reference_table', and 'unique_topics' files) to modify topics, deduplicate topics, or summarise the outputs. If you want pivot table outputs, please load in the original data file along with the selected open text column on the first tab before deduplicating or summarising.
""")
with gr.Accordion("Modify existing topics", open = False):
modification_input_files = gr.File(height=file_input_height, label="Upload files to modify topics", file_count= "multiple", file_types=['.xlsx', '.xls', '.csv', '.parquet', '.csv.gz'])
modifiable_unique_topics_df_state = gr.Dataframe(value=pd.DataFrame(), headers=None, col_count=(4, "fixed"), row_count = (1, "fixed"), visible=True, type="pandas")
save_modified_files_button = gr.Button(value="Save modified topic names")
with gr.Accordion("Upload reference data file and unique data files", open = True):
### DEDUPLICATION
deduplication_input_files = gr.File(height=file_input_height, label="Upload files to deduplicate topics", file_count= "multiple", file_types=['.xlsx', '.xls', '.csv', '.parquet', '.csv.gz'])
deduplication_input_files_status = gr.Textbox(value = "", label="Previous file input", visible=False)
with gr.Row():
merge_general_topics_drop = gr.Dropdown(label="Merge general topic values together for duplicate subtopics.", value="No", choices=["Yes", "No"])
merge_sentiment_drop = gr.Dropdown(label="Merge sentiment values together for duplicate subtopics.", value="No", choices=["Yes", "No"])
deduplicate_score_threshold = gr.Number(label="Similarity threshold with which to determine duplicates.", value = 90, minimum=5, maximum=100, precision=0)
deduplicate_previous_data_btn = gr.Button("Deduplicate topics", variant="primary")
### SUMMARISATION
summarisation_input_files = gr.File(height=file_input_height, label="Upload files to summarise", file_count= "multiple", file_types=['.xlsx', '.xls', '.csv', '.parquet', '.csv.gz'])
summarise_format_radio = gr.Radio(label="Choose summary type", value="Return a summary up to two paragraphs long that includes as much detail as possible from the original text", choices=["Return a summary up to two paragraphs long that includes as much detail as possible from the original text", "Return a concise summary up to one paragraph long that summarises only the most important themes from the original text"])
summarise_previous_data_btn = gr.Button("Summarise topics", variant="primary")
summary_output_files = gr.File(height=file_input_height, label="Summarised output files", interactive=False)
summarised_output_markdown = gr.Markdown(value="### Summarised table will appear here", show_copy_button=True)
with gr.Tab(label="Continue unfinished topic extraction"):
gr.Markdown(
"""
### Load in output files from a previous topic extraction process and continue topic extraction with new data.
""")
with gr.Accordion("Upload reference data file and unique data files", open = True):
in_previous_data_files = gr.File(height=file_input_height, label="Choose output csv files", file_count= "multiple", file_types=['.xlsx', '.xls', '.csv', '.parquet', '.csv.gz'])
in_previous_data_files_status = gr.Textbox(value = "", label="Previous file input")
continue_previous_data_files_btn = gr.Button(value="Continue previous topic extraction", variant="primary")
with gr.Tab(label="Topic table viewer"):
gr.Markdown(
"""
### View a 'unique_topic_table' csv file in markdown format.
""")
in_view_table = gr.File(height=file_input_height, label="Choose unique topic csv files", file_count= "single", file_types=['.csv', '.parquet', '.csv.gz'])
view_table_markdown = gr.Markdown(value = "", label="View table", show_copy_button=True)
with gr.Tab(label="Topic extraction settings"):
gr.Markdown(
"""
Define settings that affect large language model output.
""")
with gr.Accordion("Settings for LLM generation", open = True):
temperature_slide = gr.Slider(minimum=0.1, maximum=1.0, value=0.1, label="Choose LLM temperature setting")
batch_size_number = gr.Number(label = "Number of responses to submit in a single LLM query", value = batch_size_default, precision=0, minimum=1, maximum=100)
random_seed = gr.Number(value=42, label="Random seed for LLM generation", visible=False)
with gr.Accordion("Prompt settings", open = True):
number_of_prompts = gr.Number(value=1, label="Number of prompts to send to LLM in sequence", minimum=1, maximum=3, visible=False)
system_prompt_textbox = gr.Textbox(label="Initial system prompt", lines = 4, value = system_prompt)
initial_table_prompt_textbox = gr.Textbox(label = "Initial topics prompt", lines = 8, value = initial_table_prompt)
prompt_2_textbox = gr.Textbox(label = "Prompt 2", lines = 8, value = prompt2, visible=False)
prompt_3_textbox = gr.Textbox(label = "Prompt 3", lines = 8, value = prompt3, visible=False)
add_to_existing_topics_system_prompt_textbox = gr.Textbox(label="Additional topics system prompt", lines = 4, value = add_existing_topics_system_prompt)
add_to_existing_topics_prompt_textbox = gr.Textbox(label = "Additional topics prompt", lines = 8, value = add_existing_topics_prompt)
log_files_output = gr.File(height=file_input_height, label="Log file output", interactive=False)
conversation_metadata_textbox = gr.Textbox(label="Query metadata - usage counts and other parameters", interactive=False, lines=8)
# Invisible text box to hold the session hash/username just for logging purposes
session_hash_textbox = gr.Textbox(label = "Session hash", value="", visible=False)
estimated_time_taken_number = gr.Number(label= "Estimated time taken (seconds)", value=0.0, precision=1, visible=False) # This keeps track of the time taken to redact files for logging purposes.
total_number_of_batches = gr.Number(label = "Current batch number", value = 1, precision=0, visible=False)
text_output_logs = gr.Textbox(label = "Output summary logs", visible=False)
# AWS options - not yet implemented
# with gr.Tab(label="Advanced options"):
# with gr.Accordion(label = "AWS data access", open = True):
# aws_password_box = gr.Textbox(label="Password for AWS data access (ask the Data team if you don't have this)")
# with gr.Row():
# in_aws_file = gr.Dropdown(label="Choose file to load from AWS (only valid for API Gateway app)", choices=["None", "Lambeth borough plan"])
# load_aws_data_button = gr.Button(value="Load data from AWS", variant="secondary")
# aws_log_box = gr.Textbox(label="AWS data load status")
# ### Loading AWS data ###
# load_aws_data_button.click(fn=load_data_from_aws, inputs=[in_aws_file, aws_password_box], outputs=[in_file, aws_log_box])
###
# INTERACTIVE ELEMENT FUNCTIONS
###
# Tabular data upload
in_data_files.upload(fn=put_columns_in_df, inputs=[in_data_files], outputs=[in_colnames, in_excel_sheets, reference_data_file_name_textbox])
extract_topics_btn.click(fn=empty_output_vars_extract_topics, inputs=None, outputs=[master_topic_df_state, master_unique_topics_df_state, master_reference_df_state, topic_extraction_output_files, text_output_file_list_state, latest_batch_completed, log_files_output, log_files_output_list_state, conversation_metadata_textbox, estimated_time_taken_number, file_data_state, reference_data_file_name_textbox, display_topic_table_markdown]).\
success(load_in_data_file,
inputs = [in_data_files, in_colnames, batch_size_number, in_excel_sheets], outputs = [file_data_state, reference_data_file_name_textbox, total_number_of_batches], api_name="load_data").\
success(fn=extract_topics,
inputs=[in_data_files, file_data_state, master_topic_df_state, master_reference_df_state, master_unique_topics_df_state, display_topic_table_markdown, reference_data_file_name_textbox, total_number_of_batches, in_api_key, temperature_slide, in_colnames, model_choice, candidate_topics, latest_batch_completed, display_topic_table_markdown, text_output_file_list_state, log_files_output_list_state, first_loop_state, conversation_metadata_textbox, initial_table_prompt_textbox, prompt_2_textbox, prompt_3_textbox, system_prompt_textbox, add_to_existing_topics_system_prompt_textbox, add_to_existing_topics_prompt_textbox, number_of_prompts, batch_size_number, context_textbox, estimated_time_taken_number, sentiment_checkbox, force_zero_shot_radio],
outputs=[display_topic_table_markdown, master_topic_df_state, master_unique_topics_df_state, master_reference_df_state, topic_extraction_output_files, text_output_file_list_state, latest_batch_completed, log_files_output, log_files_output_list_state, conversation_metadata_textbox, estimated_time_taken_number, deduplication_input_files, summarisation_input_files, modifiable_unique_topics_df_state, modification_input_files], api_name="extract_topics")
# If the output file count text box changes, keep going with redacting each data file until done. Then reveal the feedback buttons.
# latest_batch_completed.change(fn=extract_topics,
# inputs=[in_data_files, file_data_state, master_topic_df_state, master_reference_df_state, master_unique_topics_df_state, display_topic_table_markdown, reference_data_file_name_textbox, total_number_of_batches, in_api_key, temperature_slide, in_colnames, model_choice, candidate_topics, latest_batch_completed, display_topic_table_markdown, text_output_file_list_state, log_files_output_list_state, second_loop_state, conversation_metadata_textbox, initial_table_prompt_textbox, prompt_2_textbox, prompt_3_textbox, system_prompt_textbox, add_to_existing_topics_system_prompt_textbox, add_to_existing_topics_prompt_textbox, number_of_prompts, batch_size_number, context_textbox, estimated_time_taken_number, sentiment_checkbox, force_zero_shot_radio],
# outputs=[display_topic_table_markdown, master_topic_df_state, master_unique_topics_df_state, master_reference_df_state, topic_extraction_output_files, text_output_file_list_state, latest_batch_completed, log_files_output, log_files_output_list_state, conversation_metadata_textbox, estimated_time_taken_number, deduplication_input_files, summarisation_input_files, modifiable_unique_topics_df_state, modification_input_files]).\
# success(fn = reveal_feedback_buttons,
# outputs=[data_feedback_radio, data_further_details_text, data_submit_feedback_btn, data_feedback_title], scroll_to_output=True)
# If you upload data into the deduplication input box, the modifiable topic dataframe box is updated
modification_input_files.change(fn=load_in_previous_data_files, inputs=[modification_input_files, modified_unique_table_change_bool], outputs=[modifiable_unique_topics_df_state, master_modify_reference_df_state, master_modify_unique_topics_df_state, reference_data_file_name_textbox, unique_topics_table_file_name_textbox, text_output_modify_file_list_state])
# Modify output table with custom topic names
save_modified_files_button.click(fn=modify_existing_output_tables, inputs=[master_modify_unique_topics_df_state, modifiable_unique_topics_df_state, master_modify_reference_df_state, text_output_modify_file_list_state], outputs=[master_unique_topics_df_state, master_reference_df_state, topic_extraction_output_files, text_output_file_list_state, deduplication_input_files, summarisation_input_files, reference_data_file_name_textbox, unique_topics_table_file_name_textbox, summarised_output_markdown])
# When button pressed, deduplicate data
deduplicate_previous_data_btn.click(load_in_previous_data_files, inputs=[deduplication_input_files], outputs=[master_reference_df_state, master_unique_topics_df_state, latest_batch_completed_no_loop, deduplication_input_files_status, reference_data_file_name_textbox, unique_topics_table_file_name_textbox]).\
success(deduplicate_topics, inputs=[master_reference_df_state, master_unique_topics_df_state, reference_data_file_name_textbox, unique_topics_table_file_name_textbox, in_excel_sheets, merge_sentiment_drop, merge_general_topics_drop, deduplicate_score_threshold, in_data_files, in_colnames], outputs=[master_reference_df_state, master_unique_topics_df_state, summarisation_input_files, log_files_output, summarised_output_markdown], scroll_to_output=True)
# When button pressed, summarise previous data
summarise_previous_data_btn.click(empty_output_vars_summarise, inputs=None, outputs=[summary_reference_table_sample_state, master_unique_topics_df_revised_summaries_state, master_reference_df_revised_summaries_state, summary_output_files, summarised_outputs_list, latest_summary_completed_num, conversation_metadata_textbox]).\
success(load_in_previous_data_files, inputs=[summarisation_input_files], outputs=[master_reference_df_state, master_unique_topics_df_state, latest_batch_completed_no_loop, deduplication_input_files_status, reference_data_file_name_textbox, unique_topics_table_file_name_textbox]).\
success(sample_reference_table_summaries, inputs=[master_reference_df_state, master_unique_topics_df_state, random_seed], outputs=[summary_reference_table_sample_state, summarised_references_markdown, master_reference_df_state, master_unique_topics_df_state]).\
success(summarise_output_topics, inputs=[summary_reference_table_sample_state, master_unique_topics_df_state, master_reference_df_state, model_choice, in_api_key, summarised_references_markdown, temperature_slide, reference_data_file_name_textbox, summarised_outputs_list, latest_summary_completed_num, conversation_metadata_textbox, in_data_files, in_excel_sheets, in_colnames, log_files_output_list_state, summarise_format_radio], outputs=[summary_reference_table_sample_state, master_unique_topics_df_revised_summaries_state, master_reference_df_revised_summaries_state, summary_output_files, summarised_outputs_list, latest_summary_completed_num, conversation_metadata_textbox, summarised_output_markdown, log_files_output])
latest_summary_completed_num.change(summarise_output_topics, inputs=[summary_reference_table_sample_state, master_unique_topics_df_state, master_reference_df_state, model_choice, in_api_key, summarised_references_markdown, temperature_slide, reference_data_file_name_textbox, summarised_outputs_list, latest_summary_completed_num, conversation_metadata_textbox, in_data_files, in_excel_sheets, in_colnames, log_files_output_list_state, summarise_format_radio], outputs=[summary_reference_table_sample_state, master_unique_topics_df_revised_summaries_state, master_reference_df_revised_summaries_state, summary_output_files, summarised_outputs_list, latest_summary_completed_num, conversation_metadata_textbox, summarised_output_markdown, log_files_output], scroll_to_output=True)
# If uploaded partially completed consultation files do this. This should then start up the 'latest_batch_completed' change action above to continue extracting topics.
continue_previous_data_files_btn.click(
load_in_data_file, inputs = [in_data_files, in_colnames, batch_size_number, in_excel_sheets], outputs = [file_data_state, reference_data_file_name_textbox, total_number_of_batches]).\
success(load_in_previous_data_files, inputs=[in_previous_data_files], outputs=[master_reference_df_state, master_unique_topics_df_state, latest_batch_completed, in_previous_data_files_status, reference_data_file_name_textbox])
###
# LOGGING AND ON APP LOAD FUNCTIONS
###
app.load(get_connection_params, inputs=None, outputs=[session_hash_state, s3_output_folder_state, session_hash_textbox])
# Log usernames and times of access to file (to know who is using the app when running on AWS)
access_callback = gr.CSVLogger(dataset_file_name=log_file_name)
access_callback.setup([session_hash_textbox], access_logs_data_folder)
session_hash_textbox.change(lambda *args: access_callback.flag(list(args)), [session_hash_textbox], None, preprocess=False).\
success(fn = upload_file_to_s3, inputs=[access_logs_state, access_s3_logs_loc_state], outputs=[s3_logs_output_textbox])
# Log usage usage when making a query
usage_callback = gr.CSVLogger(dataset_file_name=log_file_name)
usage_callback.setup([session_hash_textbox, reference_data_file_name_textbox, model_choice, conversation_metadata_textbox, estimated_time_taken_number], usage_data_folder)
conversation_metadata_textbox.change(lambda *args: usage_callback.flag(list(args)), [session_hash_textbox, reference_data_file_name_textbox, model_choice, conversation_metadata_textbox, estimated_time_taken_number], None, preprocess=False).\
success(fn = upload_file_to_s3, inputs=[usage_logs_state, usage_s3_logs_loc_state], outputs=[s3_logs_output_textbox])
# User submitted feedback
feedback_callback = gr.CSVLogger(dataset_file_name=log_file_name)
feedback_callback.setup([data_feedback_radio, data_further_details_text, reference_data_file_name_textbox, model_choice, temperature_slide, display_topic_table_markdown, conversation_metadata_textbox], feedback_data_folder)
data_submit_feedback_btn.click(lambda *args: feedback_callback.flag(list(args)), [data_feedback_radio, data_further_details_text, reference_data_file_name_textbox, model_choice, temperature_slide, display_topic_table_markdown, conversation_metadata_textbox], None, preprocess=False).\
success(fn = upload_file_to_s3, inputs=[feedback_logs_state, feedback_s3_logs_loc_state], outputs=[data_further_details_text])
in_view_table.upload(view_table, inputs=[in_view_table], outputs=[view_table_markdown])
# Get some environment variables and Launch the Gradio app
COGNITO_AUTH = get_or_create_env_var('COGNITO_AUTH', '0')
print(f'The value of COGNITO_AUTH is {COGNITO_AUTH}')
MAX_QUEUE_SIZE = int(get_or_create_env_var('MAX_QUEUE_SIZE', '5'))
print(f'The value of MAX_QUEUE_SIZE is {MAX_QUEUE_SIZE}')
MAX_FILE_SIZE = get_or_create_env_var('MAX_FILE_SIZE', '100mb')
print(f'The value of MAX_FILE_SIZE is {MAX_FILE_SIZE}')
GRADIO_SERVER_PORT = int(get_or_create_env_var('GRADIO_SERVER_PORT', '7861'))
print(f'The value of GRADIO_SERVER_PORT is {GRADIO_SERVER_PORT}')
ROOT_PATH = get_or_create_env_var('ROOT_PATH', '')
print(f'The value of ROOT_PATH is {ROOT_PATH}')
if __name__ == "__main__":
if os.environ['COGNITO_AUTH'] == "1":
app.queue(max_size=MAX_QUEUE_SIZE).launch(show_error=True, auth=authenticate_user, max_file_size=MAX_FILE_SIZE, server_port=GRADIO_SERVER_PORT, root_path=ROOT_PATH)
else:
app.queue(max_size=MAX_QUEUE_SIZE).launch(show_error=True, inbrowser=True, max_file_size=MAX_FILE_SIZE, server_port=GRADIO_SERVER_PORT, root_path=ROOT_PATH) |