File size: 8,135 Bytes
b7f4700 1f0d087 b7f4700 1f0d087 b7f4700 1f0d087 b7f4700 1f0d087 b7f4700 1f0d087 b7f4700 1f0d087 b7f4700 1f0d087 b7f4700 854a758 b7f4700 1f0d087 b7f4700 1f0d087 f5a842c 1f0d087 f5a842c 1f0d087 f5a842c 1f0d087 f5a842c 1f0d087 d4f58e6 d9427a2 1f0d087 d9427a2 b7f4700 d9427a2 b7f4700 1f0d087 b7f4700 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
from typing import TypeVar
import torch.cuda
import os
import time
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
from tools.helper_functions import RUN_LOCAL_MODEL
torch.cuda.empty_cache()
PandasDataFrame = TypeVar('pd.core.frame.DataFrame')
model_type = None # global variable setup
full_text = "" # Define dummy source text (full text) just to enable highlight function to load
model = [] # Define empty list for model functions to run
tokenizer = [] #[] # Define empty list for model functions to run
local_model_type = "Gemma 2b"
# Both models are loaded on app initialisation so that users don't have to wait for the models to be downloaded
# Check for torch cuda
print("Is CUDA enabled? ", torch.cuda.is_available())
print("Is a CUDA device available on this computer?", torch.backends.cudnn.enabled)
if torch.cuda.is_available():
torch_device = "cuda"
gpu_layers = -1
os.system("nvidia-smi")
else:
torch_device = "cpu"
gpu_layers = 0
print("Device used is: ", torch_device)
print("Running on device:", torch_device)
threads = torch.get_num_threads() # 8
print("CPU threads:", threads)
temperature: float = 0.1
top_k: int = 3
top_p: float = 1
repetition_penalty: float = 1.2 # Mild repetition penalty to prevent repeating table rows
last_n_tokens: int = 512
max_new_tokens: int = 4096 # 200
seed: int = 42
reset: bool = True
stream: bool = False
threads: int = threads
batch_size:int = 256
context_length:int = 16384
sample = True
class llama_cpp_init_config_gpu:
def __init__(self,
last_n_tokens=last_n_tokens,
seed=seed,
n_threads=threads,
n_batch=batch_size,
n_ctx=context_length,
n_gpu_layers=gpu_layers):
self.last_n_tokens = last_n_tokens
self.seed = seed
self.n_threads = n_threads
self.n_batch = n_batch
self.n_ctx = n_ctx
self.n_gpu_layers = n_gpu_layers
# self.stop: list[str] = field(default_factory=lambda: [stop_string])
def update_gpu(self, new_value):
self.n_gpu_layers = new_value
def update_context(self, new_value):
self.n_ctx = new_value
class llama_cpp_init_config_cpu(llama_cpp_init_config_gpu):
def __init__(self):
super().__init__()
self.n_gpu_layers = gpu_layers
self.n_ctx=context_length
gpu_config = llama_cpp_init_config_gpu()
cpu_config = llama_cpp_init_config_cpu()
class LlamaCPPGenerationConfig:
def __init__(self, temperature=temperature,
top_k=top_k,
top_p=top_p,
repeat_penalty=repetition_penalty,
seed=seed,
stream=stream,
max_tokens=max_new_tokens
):
self.temperature = temperature
self.top_k = top_k
self.top_p = top_p
self.repeat_penalty = repeat_penalty
self.seed = seed
self.max_tokens=max_tokens
self.stream = stream
def update_temp(self, new_value):
self.temperature = new_value
###
# Load local model
###
def get_model_path():
repo_id = os.environ.get("REPO_ID", "lmstudio-community/gemma-2-2b-it-GGUF")# "bartowski/Llama-3.2-3B-Instruct-GGUF") # "lmstudio-community/gemma-2-2b-it-GGUF")#"QuantFactory/Phi-3-mini-128k-instruct-GGUF")
filename = os.environ.get("MODEL_FILE", "gemma-2-2b-it-Q8_0.gguf") # )"Llama-3.2-3B-Instruct-Q5_K_M.gguf") #"gemma-2-2b-it-Q8_0.gguf") #"Phi-3-mini-128k-instruct.Q4_K_M.gguf")
model_dir = "model/gemma" #"model/phi" # Assuming this is your intended directory
# Construct the expected local path
local_path = os.path.join(model_dir, filename)
if os.path.exists(local_path):
print(f"Model already exists at: {local_path}")
return local_path
else:
print(f"Checking default Hugging Face folder. Downloading model from Hugging Face Hub if not found")
return hf_hub_download(repo_id=repo_id, filename=filename)
def load_model(local_model_type:str=local_model_type, gpu_layers:int=gpu_layers, max_context_length:int=context_length, gpu_config:llama_cpp_init_config_gpu=gpu_config, cpu_config:llama_cpp_init_config_cpu=cpu_config, torch_device:str=torch_device):
'''
Load in a model from Hugging Face hub via the transformers package, or using llama_cpp_python by downloading a GGUF file from Huggingface Hub.
'''
print("Loading model ", local_model_type)
if local_model_type == "Gemma 2b":
if torch_device == "cuda":
gpu_config.update_gpu(gpu_layers)
gpu_config.update_context(max_context_length)
print("Loading with", gpu_config.n_gpu_layers, "model layers sent to GPU. And a maximum context length of ", gpu_config.n_ctx)
else:
gpu_config.update_gpu(gpu_layers)
cpu_config.update_gpu(gpu_layers)
# Update context length according to slider
gpu_config.update_context(max_context_length)
cpu_config.update_context(max_context_length)
print("Loading with", cpu_config.n_gpu_layers, "model layers sent to GPU. And a maximum context length of ", gpu_config.n_ctx)
#print(vars(gpu_config))
#print(vars(cpu_config))
model_path = get_model_path()
try:
print("GPU load variables:" , vars(gpu_config))
llama_model = Llama(model_path=model_path, **vars(gpu_config)) # type_k=8, type_v = 8, flash_attn=True,
except Exception as e:
print("GPU load failed")
print(e)
llama_model = Llama(model_path=model_path, type_k=8, **vars(cpu_config)) # type_v = 8, flash_attn=True,
tokenizer = []
model = llama_model
tokenizer = tokenizer
local_model_type = local_model_type
load_confirmation = "Finished loading model: " + local_model_type
print(load_confirmation)
return model, tokenizer
def call_llama_cpp_model(formatted_string:str, gen_config:str, model=model):
"""
Calls your generation model with parameters from the LlamaCPPGenerationConfig object.
Args:
formatted_string (str): The formatted input text for the model.
gen_config (LlamaCPPGenerationConfig): An object containing generation parameters.
"""
# Extracting parameters from the gen_config object
temperature = gen_config.temperature
top_k = gen_config.top_k
top_p = gen_config.top_p
repeat_penalty = gen_config.repeat_penalty
seed = gen_config.seed
max_tokens = gen_config.max_tokens
stream = gen_config.stream
# Now you can call your model directly, passing the parameters:
output = model(
formatted_string,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repeat_penalty=repeat_penalty,
seed=seed,
max_tokens=max_tokens,
stream=stream#,
#stop=["<|eot_id|>", "\n\n"]
)
return output
# This function is not used in this app
def llama_cpp_streaming(history, full_prompt, temperature=temperature):
gen_config = LlamaCPPGenerationConfig()
gen_config.update_temp(temperature)
print(vars(gen_config))
# Pull the generated text from the streamer, and update the model output.
start = time.time()
NUM_TOKENS=0
print('-'*4+'Start Generation'+'-'*4)
output = model(
full_prompt, **vars(gen_config))
history[-1][1] = ""
for out in output:
if "choices" in out and len(out["choices"]) > 0 and "text" in out["choices"][0]:
history[-1][1] += out["choices"][0]["text"]
NUM_TOKENS+=1
yield history
else:
print(f"Unexpected output structure: {out}")
time_generate = time.time() - start
print('\n')
print('-'*4+'End Generation'+'-'*4)
print(f'Num of generated tokens: {NUM_TOKENS}')
print(f'Time for complete generation: {time_generate}s')
print(f'Tokens per secound: {NUM_TOKENS/time_generate}')
print(f'Time per token: {(time_generate/NUM_TOKENS)*1000}ms')
|