Spaces:
Runtime error
Runtime error
Added support for using local models (specifically Gemma 2b) for topic extraction and summary. Generally improved output format safeguards.
b7f4700
import os | |
import gradio as gr | |
import pandas as pd | |
def empty_output_vars_extract_topics(): | |
# Empty output objects before processing a new file | |
master_topic_df_state = pd.DataFrame() | |
master_unique_topics_df_state = pd.DataFrame() | |
master_reference_df_state = pd.DataFrame() | |
text_output_file = [] | |
text_output_file_list_state = [] | |
latest_batch_completed = 0 | |
log_files_output = [] | |
log_files_output_list_state = [] | |
conversation_metadata_textbox = "" | |
estimated_time_taken_number = 0 | |
return master_topic_df_state, master_unique_topics_df_state, master_reference_df_state, text_output_file, text_output_file_list_state, latest_batch_completed, log_files_output, log_files_output_list_state, conversation_metadata_textbox, estimated_time_taken_number | |
def empty_output_vars_summarise(): | |
# Empty output objects before summarising files | |
summary_reference_table_sample_state = pd.DataFrame() | |
master_unique_topics_df_revised_summaries_state = pd.DataFrame() | |
master_reference_df_revised_summaries_state = pd.DataFrame() | |
summary_output_files = [] | |
summarised_outputs_list = [] | |
latest_summary_completed_num = 0 | |
conversation_metadata_textbox = "" | |
return summary_reference_table_sample_state, master_unique_topics_df_revised_summaries_state, master_reference_df_revised_summaries_state, summary_output_files, summarised_outputs_list, latest_summary_completed_num, conversation_metadata_textbox | |
def get_or_create_env_var(var_name, default_value): | |
# Get the environment variable if it exists | |
value = os.environ.get(var_name) | |
# If it doesn't exist, set it to the default value | |
if value is None: | |
os.environ[var_name] = default_value | |
value = default_value | |
return value | |
RUN_AWS_FUNCTIONS = get_or_create_env_var("RUN_AWS_FUNCTIONS", "0") | |
print(f'The value of RUN_AWS_FUNCTIONS is {RUN_AWS_FUNCTIONS}') | |
RUN_LOCAL_MODEL = get_or_create_env_var("RUN_LOCAL_MODEL", "0") | |
print(f'The value of RUN_LOCAL_MODEL is {RUN_LOCAL_MODEL}') | |
if RUN_AWS_FUNCTIONS == "1": | |
model_full_names = ["anthropic.claude-3-haiku-20240307-v1:0", "anthropic.claude-3-sonnet-20240229-v1:0", "gemini-1.5-flash-002", "gemini-1.5-pro-002", "gemma_2b_it_local"] | |
model_short_names = ["haiku", "sonnet", "gemini_flash", "gemini_pro", "gemma_local"] | |
else: | |
model_full_names = ["gemini-1.5-flash-002", "gemini-1.5-pro-002", "gemma_2b_it_local"] | |
model_short_names = ["gemini_flash", "gemini_pro", "gemma_local"] | |
if RUN_LOCAL_MODEL == "0": | |
model_full_names.remove("gemma_2b_it_local") | |
model_short_names.remove("gemma_local") | |
model_name_map = {short: full for short, full in zip(model_full_names, model_short_names)} | |
# Retrieving or setting output folder | |
env_var_name = 'GRADIO_OUTPUT_FOLDER' | |
default_value = 'output/' | |
output_folder = get_or_create_env_var(env_var_name, default_value) | |
print(f'The value of {env_var_name} is {output_folder}') | |
def get_file_path_with_extension(file_path): | |
# First, get the basename of the file (e.g., "example.txt" from "/path/to/example.txt") | |
basename = os.path.basename(file_path) | |
# Return the basename with its extension | |
return basename | |
def get_file_path_end(file_path): | |
# First, get the basename of the file (e.g., "example.txt" from "/path/to/example.txt") | |
basename = os.path.basename(file_path) | |
# Then, split the basename and its extension and return only the basename without the extension | |
filename_without_extension, _ = os.path.splitext(basename) | |
#print(filename_without_extension) | |
return filename_without_extension | |
def detect_file_type(filename): | |
"""Detect the file type based on its extension.""" | |
if (filename.endswith('.csv')) | (filename.endswith('.csv.gz')) | (filename.endswith('.zip')): | |
return 'csv' | |
elif filename.endswith('.xlsx'): | |
return 'xlsx' | |
elif filename.endswith('.parquet'): | |
return 'parquet' | |
elif filename.endswith('.pdf'): | |
return 'pdf' | |
elif filename.endswith('.jpg'): | |
return 'jpg' | |
elif filename.endswith('.jpeg'): | |
return 'jpeg' | |
elif filename.endswith('.png'): | |
return 'png' | |
else: | |
raise ValueError("Unsupported file type.") | |
def read_file(filename): | |
"""Read the file based on its detected type.""" | |
file_type = detect_file_type(filename) | |
if file_type == 'csv': | |
return pd.read_csv(filename, low_memory=False) | |
elif file_type == 'xlsx': | |
return pd.read_excel(filename) | |
elif file_type == 'parquet': | |
return pd.read_parquet(filename) | |
def view_table(file_path: str, max_width: int = 60): # Added max_width parameter | |
df = pd.read_csv(file_path) | |
df_cleaned = df.replace('\n', ' ', regex=True) | |
# Wrap text in each column to the specified max width, including whole words | |
def wrap_text(text): | |
if isinstance(text, str): | |
words = text.split(' ') | |
wrapped_lines = [] | |
current_line = "" | |
for word in words: | |
# Check if adding the next word exceeds the max width | |
if len(current_line) + len(word) + 1 > max_width: # +1 for the space | |
wrapped_lines.append(current_line) | |
current_line = word # Start a new line with the current word | |
else: | |
if current_line: # If current_line is not empty, add a space | |
current_line += ' ' | |
current_line += word | |
# Add any remaining text in current_line to wrapped_lines | |
if current_line: | |
wrapped_lines.append(current_line) | |
return '<br>'.join(wrapped_lines) # Join lines with <br> | |
return text | |
# Use apply with axis=1 to apply wrap_text to each element | |
df_cleaned = df_cleaned.apply(lambda col: col.map(wrap_text)) | |
table_out = df_cleaned.to_markdown(index=False) | |
return table_out | |
def ensure_output_folder_exists(): | |
"""Checks if the 'output/' folder exists, creates it if not.""" | |
folder_name = "output/" | |
if not os.path.exists(folder_name): | |
# Create the folder if it doesn't exist | |
os.makedirs(folder_name) | |
print(f"Created the 'output/' folder.") | |
else: | |
print(f"The 'output/' folder already exists.") | |
def put_columns_in_df(in_file): | |
new_choices = [] | |
concat_choices = [] | |
all_sheet_names = [] | |
number_of_excel_files = 0 | |
for file in in_file: | |
file_name = file.name | |
file_type = detect_file_type(file_name) | |
#print("File type is:", file_type) | |
file_end = get_file_path_with_extension(file_name) | |
if file_type == 'xlsx': | |
number_of_excel_files += 1 | |
new_choices = [] | |
print("Running through all xlsx sheets") | |
anon_xlsx = pd.ExcelFile(file_name) | |
new_sheet_names = anon_xlsx.sheet_names | |
# Iterate through the sheet names | |
for sheet_name in new_sheet_names: | |
# Read each sheet into a DataFrame | |
df = pd.read_excel(file_name, sheet_name=sheet_name) | |
# Process the DataFrame (e.g., print its contents) | |
print(f"Sheet Name: {sheet_name}") | |
print(df.head()) # Print the first few rows | |
new_choices.extend(list(df.columns)) | |
all_sheet_names.extend(new_sheet_names) | |
else: | |
df = read_file(file_name) | |
new_choices = list(df.columns) | |
concat_choices.extend(new_choices) | |
# Drop duplicate columns | |
concat_choices = list(set(concat_choices)) | |
if number_of_excel_files > 0: | |
return gr.Dropdown(choices=concat_choices, value=concat_choices[0]), gr.Dropdown(choices=all_sheet_names, value=all_sheet_names[0], visible=True), file_end | |
else: | |
return gr.Dropdown(choices=concat_choices, value=concat_choices[0]), gr.Dropdown(visible=False), file_end | |
# Following function is only relevant for locally-created executable files based on this app (when using pyinstaller it creates a _internal folder that contains tesseract and poppler. These need to be added to the system path to enable the app to run) | |
def add_folder_to_path(folder_path: str): | |
''' | |
Check if a folder exists on your system. If so, get the absolute path and then add it to the system Path variable if it doesn't already exist. | |
''' | |
if os.path.exists(folder_path) and os.path.isdir(folder_path): | |
print(folder_path, "folder exists.") | |
# Resolve relative path to absolute path | |
absolute_path = os.path.abspath(folder_path) | |
current_path = os.environ['PATH'] | |
if absolute_path not in current_path.split(os.pathsep): | |
full_path_extension = absolute_path + os.pathsep + current_path | |
os.environ['PATH'] = full_path_extension | |
#print(f"Updated PATH with: ", full_path_extension) | |
else: | |
print(f"Directory {folder_path} already exists in PATH.") | |
else: | |
print(f"Folder not found at {folder_path} - not added to PATH") | |
# Upon running a process, the feedback buttons are revealed | |
def reveal_feedback_buttons(): | |
return gr.Radio(visible=True), gr.Textbox(visible=True), gr.Button(visible=True), gr.Markdown(visible=True) | |
def wipe_logs(feedback_logs_loc, usage_logs_loc): | |
try: | |
os.remove(feedback_logs_loc) | |
except Exception as e: | |
print("Could not remove feedback logs file", e) | |
try: | |
os.remove(usage_logs_loc) | |
except Exception as e: | |
print("Could not remove usage logs file", e) | |
async def get_connection_params(request: gr.Request): | |
base_folder = "" | |
if request: | |
#print("request user:", request.username) | |
#request_data = await request.json() # Parse JSON body | |
#print("All request data:", request_data) | |
#context_value = request_data.get('context') | |
#if 'context' in request_data: | |
# print("Request context dictionary:", request_data['context']) | |
# print("Request headers dictionary:", request.headers) | |
# print("All host elements", request.client) | |
# print("IP address:", request.client.host) | |
# print("Query parameters:", dict(request.query_params)) | |
# To get the underlying FastAPI items you would need to use await and some fancy @ stuff for a live query: https://fastapi.tiangolo.com/vi/reference/request/ | |
#print("Request dictionary to object:", request.request.body()) | |
print("Session hash:", request.session_hash) | |
# Retrieving or setting CUSTOM_CLOUDFRONT_HEADER | |
CUSTOM_CLOUDFRONT_HEADER_var = get_or_create_env_var('CUSTOM_CLOUDFRONT_HEADER', '') | |
#print(f'The value of CUSTOM_CLOUDFRONT_HEADER is {CUSTOM_CLOUDFRONT_HEADER_var}') | |
# Retrieving or setting CUSTOM_CLOUDFRONT_HEADER_VALUE | |
CUSTOM_CLOUDFRONT_HEADER_VALUE_var = get_or_create_env_var('CUSTOM_CLOUDFRONT_HEADER_VALUE', '') | |
#print(f'The value of CUSTOM_CLOUDFRONT_HEADER_VALUE_var is {CUSTOM_CLOUDFRONT_HEADER_VALUE_var}') | |
if CUSTOM_CLOUDFRONT_HEADER_var and CUSTOM_CLOUDFRONT_HEADER_VALUE_var: | |
if CUSTOM_CLOUDFRONT_HEADER_var in request.headers: | |
supplied_cloudfront_custom_value = request.headers[CUSTOM_CLOUDFRONT_HEADER_var] | |
if supplied_cloudfront_custom_value == CUSTOM_CLOUDFRONT_HEADER_VALUE_var: | |
print("Custom Cloudfront header found:", supplied_cloudfront_custom_value) | |
else: | |
raise(ValueError, "Custom Cloudfront header value does not match expected value.") | |
# Get output save folder from 1 - username passed in from direct Cognito login, 2 - Cognito ID header passed through a Lambda authenticator, 3 - the session hash. | |
if request.username: | |
out_session_hash = request.username | |
base_folder = "user-files/" | |
print("Request username found:", out_session_hash) | |
elif 'x-cognito-id' in request.headers: | |
out_session_hash = request.headers['x-cognito-id'] | |
base_folder = "user-files/" | |
print("Cognito ID found:", out_session_hash) | |
else: | |
out_session_hash = request.session_hash | |
base_folder = "temp-files/" | |
# print("Cognito ID not found. Using session hash as save folder:", out_session_hash) | |
output_folder = base_folder + out_session_hash + "/" | |
#if bucket_name: | |
# print("S3 output folder is: " + "s3://" + bucket_name + "/" + output_folder) | |
return out_session_hash, output_folder, out_session_hash | |
else: | |
print("No session parameters found.") | |
return "","" |