text_summariser / app.py
seanpedrickcase's picture
Added a stop processing button and timeout for Mistral model
1f9788f
raw
history blame
15.5 kB
import gradio as gr
from datetime import datetime
import pandas as pd
from transformers import pipeline, AutoTokenizer
import os
from typing import Type
import gradio as gr
import ctransformers
# Concurrent futures is used to cancel processes that are taking too long
import concurrent.futures
PandasDataFrame = Type[pd.DataFrame]
import chatfuncs.chatfuncs as chatf
from chatfuncs.helper_functions import dummy_function, display_info, put_columns_in_df, put_columns_in_join_df, get_temp_folder_path, empty_folder
# Disable cuda devices if necessary
#os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
from torch import cuda, backends
# Check for torch cuda
print("Is CUDA enabled? ", cuda.is_available())
print("Is a CUDA device available on this computer?", backends.cudnn.enabled)
if cuda.is_available():
torch_device = "cuda"
os.system("nvidia-smi")
else:
torch_device = "cpu"
print("Device used is: ", torch_device)
def create_hf_model(model_name):
tokenizer = AutoTokenizer.from_pretrained(model_name, model_max_length = chatf.context_length)
summariser = pipeline("summarization", model=model_name, tokenizer=tokenizer) # philschmid/bart-large-cnn-samsum
#from transformers import AutoModelForSeq2SeqLM, AutoModelForCausalLM
# if torch_device == "cuda":
# if "flan" in model_name:
# model = AutoModelForSeq2SeqLM.from_pretrained(model_name, device_map="auto")
# else:
# model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
# else:
# if "flan" in model_name:
# model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
# else:
# model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
return summariser, tokenizer, model_name
def load_model(model_type, gpu_layers, gpu_config=None, cpu_config=None, torch_device=None):
print("Loading model ", model_type)
# Default values inside the function
if gpu_config is None:
gpu_config = chatf.gpu_config
if cpu_config is None:
cpu_config = chatf.cpu_config
if torch_device is None:
torch_device = chatf.torch_device
if model_type == "Mistral Nous Capybara 4k (larger, slow)":
hf_checkpoint = 'NousResearch/Nous-Capybara-7B-V1.9-GGUF'
if torch_device == "cuda":
gpu_config.update_gpu(gpu_layers)
else:
gpu_config.update_gpu(gpu_layers)
cpu_config.update_gpu(gpu_layers)
print("Loading with", cpu_config.gpu_layers, "model layers sent to GPU.")
print(vars(gpu_config))
print(vars(cpu_config))
try:
#model = ctransformers.AutoModelForCausalLM.from_pretrained('Aryanne/Orca-Mini-3B-gguf', model_type='llama', model_file='q5_0-orca-mini-3b.gguf', **vars(gpu_config)) # **asdict(CtransRunConfig_cpu())
#model = ctransformers.AutoModelForCausalLM.from_pretrained('Aryanne/Wizard-Orca-3B-gguf', model_type='llama', model_file='q4_1-wizard-orca-3b.gguf', **vars(gpu_config)) # **asdict(CtransRunConfig_cpu())
#model = ctransformers.AutoModelForCausalLM.from_pretrained('TheBloke/Mistral-7B-OpenOrca-GGUF', model_type='mistral', model_file='mistral-7b-openorca.Q4_K_M.gguf', **vars(gpu_config), hf=True) # **asdict(CtransRunConfig_cpu())
#model = ctransformers.AutoModelForCausalLM.from_pretrained('TheBloke/OpenHermes-2.5-Mistral-7B-16k-GGUF', model_type='mistral', model_file='openhermes-2.5-mistral-7b-16k.Q4_K_M.gguf', **vars(gpu_config), hf=True) # **asdict(CtransRunConfig_cpu())
model = ctransformers.AutoModelForCausalLM.from_pretrained('NousResearch/Nous-Capybara-7B-V1.9-GGUF', model_type='mistral', model_file='Capybara-7B-V1.9-Q5_K_M.gguf', **vars(gpu_config), hf=True) # **asdict(CtransRunConfig_cpu())
tokenizer = AutoTokenizer.from_pretrained("NousResearch/Nous-Capybara-7B-V1.9")
summariser = pipeline("text-generation", model=model, tokenizer=tokenizer)
except:
#model = ctransformers.AutoModelForCausalLM.from_pretrained('Aryanne/Orca-Mini-3B-gguf', model_type='llama', model_file='q5_0-orca-mini-3b.gguf', **vars(cpu_config)) #**asdict(CtransRunConfig_gpu())
#model = ctransformers.AutoModelForCausalLM.from_pretrained('Aryanne/Wizard-Orca-3B-gguf', model_type='llama', model_file='q4_1-wizard-orca-3b.gguf', **vars(cpu_config)) # **asdict(CtransRunConfig_cpu())
#model = ctransformers.AutoModelForCausalLM.from_pretrained('TheBloke/Mistral-7B-OpenOrca-GGUF', model_type='mistral', model_file='mistral-7b-openorca.Q4_K_M.gguf', **vars(cpu_config), hf=True) # **asdict(CtransRunConfig_cpu())
#model = ctransformers.AutoModelForCausalLM.from_pretrained('TheBloke/OpenHermes-2.5-Mistral-7B-16k-GGUF', model_type='mistral', model_file='openhermes-2.5-mistral-7b-16k.Q4_K_M.gguf', **vars(gpu_config), hf=True) # **asdict(CtransRunConfig_cpu())
model = ctransformers.AutoModelForCausalLM.from_pretrained('NousResearch/Nous-Capybara-7B-V1.9-GGUF', model_type='mistral', model_file='Capybara-7B-V1.9-Q5_K_M.gguf', **vars(gpu_config), hf=True) # **asdict(CtransRunConfig_cpu())
#tokenizer = ctransformers.AutoTokenizer.from_pretrained(model)
tokenizer = AutoTokenizer.from_pretrained("NousResearch/Nous-Capybara-7B-V1.9")
summariser = pipeline("text-generation", model=model, tokenizer=tokenizer) # model
#model = []
#tokenizer = []
#summariser = []
if model_type == "Flan T5 Large Stacked Samsum 1k":
# Huggingface chat model
hf_checkpoint = 'stacked-summaries/flan-t5-large-stacked-samsum-1024'#'declare-lab/flan-alpaca-base' # # #
summariser, tokenizer, model_type = create_hf_model(model_name = hf_checkpoint)
if model_type == "Long T5 Global Base 16k Book Summary":
# Huggingface chat model
hf_checkpoint = 'pszemraj/long-t5-tglobal-base-16384-book-summary' #'philschmid/flan-t5-small-stacked-samsum'#'declare-lab/flan-alpaca-base' # # #
summariser, tokenizer, model_type = create_hf_model(model_name = hf_checkpoint)
chatf.model = summariser
chatf.tokenizer = tokenizer
chatf.model_type = model_type
load_confirmation = "Finished loading model: " + model_type
print(load_confirmation)
return model_type, load_confirmation, model_type
# Both models are loaded on app initialisation so that users don't have to wait for the models to be downloaded
model_type = "Mistral Nous Capybara 4k (larger, slow)"
load_model(model_type, chatf.gpu_layers, chatf.gpu_config, chatf.cpu_config, chatf.torch_device)
model_type = "Flan T5 Large Stacked Samsum 1k"
load_model(model_type, chatf.gpu_layers, chatf.gpu_config, chatf.cpu_config, chatf.torch_device)
model_type = "Long T5 Global Base 16k Book Summary"
load_model(model_type, chatf.gpu_layers, chatf.gpu_config, chatf.cpu_config, chatf.torch_device)
today = datetime.now().strftime("%d%m%Y")
today_rev = datetime.now().strftime("%Y%m%d")
def summarise_text(text, text_df, length_slider, in_colname, model_type, progress=gr.Progress()):
if text_df.empty:
in_colname="text"
in_colname_list_first = in_colname
in_text_df = pd.DataFrame({in_colname_list_first:[text]})
else:
in_text_df = text_df
in_colname_list_first = in_colname
print(model_type)
texts_list = list(in_text_df[in_colname_list_first])
if model_type != "Mistral Nous Capybara 4k (larger, slow)":
summarised_texts = []
for single_text in progress.tqdm(texts_list, desc = "Summarising texts", unit = "texts"):
summarised_text = chatf.model(single_text, max_length=length_slider)
#print(summarised_text)
summarised_text_str = summarised_text[0]['summary_text']
summarised_texts.append(summarised_text_str)
print(summarised_text_str)
#pd.Series(summarised_texts).to_csv("summarised_texts_out.csv")
#print(summarised_texts)
if model_type == "Mistral Nous Capybara 4k (larger, slow)":
# Define a function that calls your model
def call_model(formatted_string, max_length=10000):
return chatf.model(formatted_string, max_length=max_length)
# Set your timeout duration (in seconds)
timeout_duration = 300 # Adjust this value as needed
length = str(length_slider)
from chatfuncs.prompts import nous_capybara_prompt
summarised_texts = []
for single_text in progress.tqdm(texts_list, desc = "Summarising texts", unit = "texts"):
formatted_string = nous_capybara_prompt.format(length=length, text=single_text)
# Use ThreadPoolExecutor to enforce a timeout
with concurrent.futures.ThreadPoolExecutor() as executor:
future = executor.submit(call_model, formatted_string, 10000)
try:
output = future.result(timeout=timeout_duration)
# Process the output here
except concurrent.futures.TimeoutError:
error_text = f"Timeout (five minutes) occurred for text: {single_text}. Consider using a smaller model."
print(error_text)
return error_text, None
print(output)
output_str = output[0]['generated_text']
# Find the index of 'ASSISTANT: ' to select only text after this location
index = output_str.find('ASSISTANT: ')
# Check if 'ASSISTANT: ' is found in the string
if index != -1:
# Add the length of 'ASSISTANT: ' to the index to start from the end of this substring
start_index = index + len('ASSISTANT: ')
# Slice the string from this point to the end
assistant_text = output_str[start_index:]
else:
assistant_text = "ASSISTANT: not found in text"
print(assistant_text)
summarised_texts.append(assistant_text)
#print(summarised_text)
#pd.Series(summarised_texts).to_csv("summarised_texts_out.csv")
if text_df.empty:
#if model_type != "Mistral Nous Capybara 4k (larger, slow)":
summarised_text_out = summarised_texts[0]#.values()
#if model_type == "Mistral Nous Capybara 4k (larger, slow)":
# summarised_text_out = summarised_texts[0]
else:
summarised_text_out = summarised_texts #[d['summary_text'] for d in summarised_texts] #summarised_text[0].values()
output_name = "summarise_output_" + today_rev + ".csv"
output_df = pd.DataFrame({"Original text":in_text_df[in_colname_list_first],
"Summarised text":summarised_text_out})
summarised_text_out_str = str(output_df["Summarised text"][0])#.str.replace("dict_values([","").str.replace("])",""))
output_df.to_csv(output_name, index = None)
return summarised_text_out_str, output_name
# ## Gradio app - summarise
block = gr.Blocks(theme = gr.themes.Base())
with block:
data_state = gr.State(pd.DataFrame())
model_type_state = gr.State(model_type)
gr.Markdown(
"""
# Text summariser
Enter open text below to get a summary. You can copy and paste text directly, or upload a file and specify the column that you want to summarise. The default small model will be able to summarise up to about 16,000 words, but the quality may not be great. The larger model around 900 words of better quality. Summarisation with Mistral Nous Capybara 4k works on up to around 4,000 words, and may give a higher quality summary, but will be slow, and it may not respect your desired maximum word count.
""")
with gr.Tab("Summariser"):
current_model = gr.Textbox(label="Current model", value=model_type, scale = 3)
with gr.Accordion("Paste open text", open = False):
in_text = gr.Textbox(label="Copy and paste your open text here", lines = 5)
with gr.Accordion("Summarise open text from a file", open = False):
in_text_df = gr.File(label="Input text from file", file_count='multiple')
in_colname = gr.Dropdown(label="Write the column name for the open text to summarise")
with gr.Row():
summarise_btn = gr.Button("Summarise")
stop = gr.Button(value="Interrupt processing", variant="secondary", scale=0)
length_slider = gr.Slider(minimum = 30, maximum = 500, value = 100, step = 10, label = "Maximum length of summary")
with gr.Row():
output_single_text = gr.Textbox(label="Output example (first example in dataset)")
output_file = gr.File(label="Output file")
with gr.Tab("Advanced features"):
#out_passages = gr.Slider(minimum=1, value = 2, maximum=10, step=1, label="Choose number of passages to retrieve from the document. Numbers greater than 2 may lead to increased hallucinations or input text being truncated.")
#temp_slide = gr.Slider(minimum=0.1, value = 0.1, maximum=1, step=0.1, label="Choose temperature setting for response generation.")
with gr.Row():
model_choice = gr.Radio(label="Choose a summariser model", value="Long T5 Global Base 16k Book Summary", choices = ["Long T5 Global Base 16k Book Summary", "Flan T5 Large Stacked Samsum 1k", "Mistral Nous Capybara 4k (larger, slow)"])
change_model_button = gr.Button(value="Load model", scale=0)
with gr.Accordion("Choose number of model layers to send to GPU (WARNING: please don't modify unless you are sure you have a GPU).", open = False):
gpu_layer_choice = gr.Slider(label="Choose number of model layers to send to GPU.", value=0, minimum=0, maximum=100, step = 1, visible=True)
load_text = gr.Text(label="Load status")
# Update dropdowns upon initial file load
in_text_df.upload(put_columns_in_df, inputs=[in_text_df, in_colname], outputs=[in_colname, data_state])
change_model_button.click(fn=load_model, inputs=[model_choice, gpu_layer_choice], outputs = [model_type_state, load_text, current_model])
summarise_click = summarise_btn.click(fn=summarise_text, inputs=[in_text, data_state, length_slider, in_colname, model_type_state],
outputs=[output_single_text, output_file], api_name="summarise_single_text")
summarise_enter = summarise_btn.click(fn=summarise_text, inputs=[in_text, data_state, length_slider, in_colname, model_type_state],
outputs=[output_single_text, output_file])
# Stop processing if it's taking too long
stop.click(fn=None, inputs=None, outputs=None, cancels=[summarise_click, summarise_enter])
# Dummy function to allow dropdown modification to work correctly (strange thing needed for Gradio 3.50, will be deprecated upon upgrading Gradio version)
in_colname.change(dummy_function, in_colname, None)
block.queue(concurrency_count=1).launch()
# -