text_summariser / app.py
seanpedrickcase's picture
Dockerfile now loads models to local folder. Can use custom output folder. requrirements for GPU-enabled summarisation now in separate file to hopefully avoid HF space issues.
3809dc8
raw
history blame
14.3 kB
import gradio as gr
from datetime import datetime
import pandas as pd
from transformers import pipeline, AutoTokenizer
import os
from typing import Type
import gradio as gr
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
PandasDataFrame = Type[pd.DataFrame]
import chatfuncs.chatfuncs as chatf
import chatfuncs.summarise_funcs as sumf
from chatfuncs.helper_functions import dummy_function, put_columns_in_df, output_folder, ensure_output_folder_exists
from chatfuncs.summarise_funcs import summarise_text
ensure_output_folder_exists(output_folder)
# Disable cuda devices if necessary
#os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
from torch import cuda, backends
# Check for torch cuda
print("Is CUDA enabled? ", cuda.is_available())
print("Is a CUDA device available on this computer?", backends.cudnn.enabled)
if cuda.is_available():
torch_device = "cuda"
os.system("nvidia-smi")
else:
torch_device = "cpu"
print("Device used is: ", torch_device)
def create_hf_model(model_name, local_model_dir="model/t5_long"):
# Construct the expected local model path
local_model_path = os.path.join(local_model_dir, model_name)
# Check if the model directory exists
if os.path.exists(local_model_path):
print(f"Model '{model_name}' found locally at: {local_model_path}")
# Load tokenizer and pipeline from local path
tokenizer = AutoTokenizer.from_pretrained(local_model_path, model_max_length=chatf.context_length)
summariser = pipeline("summarization", model=local_model_path, tokenizer=tokenizer)
else:
print(f"Downloading model '{model_name}' from Hugging Face Hub...")
# Download tokenizer and pipeline from Hugging Face Hub
tokenizer = AutoTokenizer.from_pretrained(model_name, model_max_length=chatf.context_length)
summariser = pipeline("summarization", model=model_name, tokenizer=tokenizer)
# Save the model locally (optional, but recommended for future use)
#summariser.save_pretrained(local_model_path)
return summariser, tokenizer, model_name
def load_model(model_type, gpu_layers, gpu_config=None, cpu_config=None, torch_device=None):
print("Loading model ", model_type)
# Default values inside the function
if gpu_config is None:
gpu_config = chatf.gpu_config
if cpu_config is None:
cpu_config = chatf.cpu_config
if torch_device is None:
torch_device = chatf.torch_device
if model_type == "Phi 3 128k (24k tokens max)":
if torch_device == "cuda":
gpu_config.update_gpu(gpu_layers)
print("Loading with", gpu_config.n_gpu_layers, "model layers sent to GPU.")
else:
gpu_config.update_gpu(gpu_layers)
cpu_config.update_gpu(gpu_layers)
print("Loading with", cpu_config.n_gpu_layers, "model layers sent to GPU.")
print(vars(gpu_config))
print(vars(cpu_config))
def get_model_path():
repo_id = os.environ.get("REPO_ID", "QuantFactory/Phi-3-mini-128k-instruct-GGUF")
filename = os.environ.get("MODEL_FILE", "Phi-3-mini-128k-instruct.Q4_K_M.gguf")
model_dir = "model/phi" # Assuming this is your intended directory
# Construct the expected local path
local_path = os.path.join(model_dir, filename)
if os.path.exists(local_path):
print(f"Model already exists at: {local_path}")
return local_path
else:
print(f"Checking default Hugging Face folder. Downloading model from Hugging Face Hub if not found")
return hf_hub_download(repo_id=repo_id, filename=filename)
model_path = get_model_path()
try:
summariser = Llama(model_path=model_path, **vars(gpu_config))
except Exception as e:
print("GPU load failed")
print(e)
summariser = Llama(model_path=model_path, **vars(cpu_config))
tokenizer = []
if model_type == "Flan T5 Large Stacked Samsum 1k":
# Huggingface chat model
hf_checkpoint = 'stacked-summaries/flan-t5-large-stacked-samsum-1024'
summariser, tokenizer, model_type = create_hf_model(model_name = hf_checkpoint, local_model_dir="model/t5_stacked")
if model_type == "Long T5 Global Base 16k Book Summary":
# Huggingface chat model
hf_checkpoint = 'pszemraj/long-t5-tglobal-base-16384-book-summary'
summariser, tokenizer, model_type = create_hf_model(model_name = hf_checkpoint, local_model_dir="model/t5_long")
sumf.model = summariser
sumf.tokenizer = tokenizer
sumf.model_type = model_type
load_confirmation = "Finished loading model: " + model_type
print(load_confirmation)
return model_type, load_confirmation, model_type
# Both models are loaded on app initialisation so that users don't have to wait for the models to be downloaded
model_type = "Phi 3 128k (24k tokens max)"
load_model(model_type, chatf.gpu_layers, chatf.gpu_config, chatf.cpu_config, chatf.torch_device)
model_type = "Flan T5 Large Stacked Samsum 1k"
load_model(model_type, chatf.gpu_layers, chatf.gpu_config, chatf.cpu_config, chatf.torch_device)
model_type = "Long T5 Global Base 16k Book Summary"
load_model(model_type, chatf.gpu_layers, chatf.gpu_config, chatf.cpu_config, chatf.torch_device)
today = datetime.now().strftime("%d%m%Y")
today_rev = datetime.now().strftime("%Y%m%d")
# ## Gradio app - summarise
block = gr.Blocks(theme = gr.themes.Base())
with block:
data_state = gr.State(pd.DataFrame())
model_type_state = gr.State(model_type)
gr.Markdown(
"""
# Text summariser
Enter open text below to get a summary. You can copy and paste text directly, or upload a file and specify the column that you want to summarise. The default small model will be able to summarise up to about 12,000 words, but the quality may not be great. The larger model around 800 words of better quality. Summarisation with Phi 3 128k works on up to around 20,000 words (suitable for a 12Gb graphics card without out of memory issues), and may give a higher quality summary, but will be slow, and it may not respect your desired maximum word count.
""")
with gr.Tab("Summariser"):
current_model = gr.Textbox(label="Current model", value=model_type, scale = 3)
with gr.Accordion("Summarise open text from a file", open = True):
in_text_df = gr.File(label="Input text from file", file_count='multiple')
in_colname = gr.Dropdown(label="Write the column name for the open text to summarise")
with gr.Accordion("Paste open text", open = False):
in_text = gr.Textbox(label="Copy and paste your open text here", lines = 5)
with gr.Row():
summarise_btn = gr.Button("Summarise", variant="primary")
stop = gr.Button(value="Interrupt processing", variant="secondary", scale=0)
length_slider = gr.Slider(minimum = 30, maximum = 1000, value = 500, step = 10, label = "Maximum length of summary (in words)")
with gr.Row():
output_single_text = gr.Textbox(label="Output example (first example in dataset)")
output_file = gr.File(label="Output file")
with gr.Tab("Advanced features"):
with gr.Row():
model_choice = gr.Radio(label="Choose a summariser model", value="Long T5 Global Base 16k Book Summary", choices = ["Long T5 Global Base 16k Book Summary", "Flan T5 Large Stacked Samsum 1k", "Phi 3 128k (24k tokens max)"])
change_model_button = gr.Button(value="Load model", scale=0)
with gr.Accordion("Choose number of model layers to send to GPU (WARNING: please don't modify unless you are sure you have a GPU).", open = False):
gpu_layer_choice = gr.Slider(label="Choose number of model layers to send to GPU.", value=0, minimum=0, maximum=100, step = 1, visible=True)
with gr.Accordion("LLM parameters"):
temp_slide = gr.Slider(minimum=0.1, value = 0.5, maximum=1, step=0.1, label="Choose temperature setting for response generation.", interactive=True)
load_text = gr.Text(label="Load status")
# Update dropdowns upon initial file load
in_text_df.upload(put_columns_in_df, inputs=[in_text_df, in_colname], outputs=[in_colname, data_state])
change_model_button.click(fn=load_model, inputs=[model_choice, gpu_layer_choice], outputs = [model_type_state, load_text, current_model])
summarise_click = summarise_btn.click(fn=summarise_text, inputs=[in_text, data_state, length_slider, in_colname, model_type_state],
outputs=[output_single_text, output_file], api_name="summarise")
# summarise_enter = summarise_btn.submit(fn=summarise_text, inputs=[in_text, data_state, length_slider, in_colname, model_type_state],
# outputs=[output_single_text, output_file])
#summarise_click = summarise_btn.click(chatf.llama_cpp_streaming, [chatbot, instruction_prompt_out, model_type_state, temp_slide], chatbot)
# Stop processing if it's taking too long
stop.click(fn=None, inputs=None, outputs=None, cancels=[summarise_click])
# Dummy function to allow dropdown modification to work correctly (strange thing needed for Gradio 3.50, will be deprecated upon upgrading Gradio version)
in_colname.change(dummy_function, in_colname, None)
block.queue().launch(show_error=True)
# def load_model(model_type, gpu_layers, gpu_config=None, cpu_config=None, torch_device=None):
# print("Loading model ", model_type)
# # Default values inside the function
# if gpu_config is None:
# gpu_config = chatf.gpu_config
# if cpu_config is None:
# cpu_config = chatf.cpu_config
# if torch_device is None:
# torch_device = chatf.torch_device
# if model_type == "Phi 3 128k (24k tokens max)":
# hf_checkpoint = 'NousResearch/Nous-Capybara-7B-V1.9-GGUF'
# if torch_device == "cuda":
# gpu_config.update_gpu(gpu_layers)
# else:
# gpu_config.update_gpu(gpu_layers)
# cpu_config.update_gpu(gpu_layers)
# print("Loading with", cpu_config.gpu_layers, "model layers sent to GPU.")
# print(vars(gpu_config))
# print(vars(cpu_config))
# try:
# #model = ctransformers.AutoModelForCausalLM.from_pretrained('Aryanne/Orca-Mini-3B-gguf', model_type='llama', model_file='q5_0-orca-mini-3b.gguf', **vars(gpu_config)) # **asdict(CtransRunConfig_cpu())
# #model = ctransformers.AutoModelForCausalLM.from_pretrained('Aryanne/Wizard-Orca-3B-gguf', model_type='llama', model_file='q4_1-wizard-orca-3b.gguf', **vars(gpu_config)) # **asdict(CtransRunConfig_cpu())
# #model = ctransformers.AutoModelForCausalLM.from_pretrained('TheBloke/Mistral-7B-OpenOrca-GGUF', model_type='mistral', model_file='mistral-7b-openorca.Q4_K_M.gguf', **vars(gpu_config), hf=True) # **asdict(CtransRunConfig_cpu())
# #model = ctransformers.AutoModelForCausalLM.from_pretrained('TheBloke/OpenHermes-2.5-Mistral-7B-16k-GGUF', model_type='mistral', model_file='openhermes-2.5-mistral-7b-16k.Q4_K_M.gguf', **vars(gpu_config), hf=True) # **asdict(CtransRunConfig_cpu())
# model = ctransformers.AutoModelForCausalLM.from_pretrained('NousResearch/Nous-Capybara-7B-V1.9-GGUF', model_type='mistral', model_file='Capybara-7B-V1.9-Q5_K_M.gguf', **vars(gpu_config), hf=True) # **asdict(CtransRunConfig_cpu())
# tokenizer = AutoTokenizer.from_pretrained("NousResearch/Nous-Capybara-7B-V1.9")
# summariser = pipeline("text-generation", model=model, tokenizer=tokenizer)
# except:
# #model = ctransformers.AutoModelForCausalLM.from_pretrained('Aryanne/Orca-Mini-3B-gguf', model_type='llama', model_file='q5_0-orca-mini-3b.gguf', **vars(cpu_config)) #**asdict(CtransRunConfig_gpu())
# #model = ctransformers.AutoModelForCausalLM.from_pretrained('Aryanne/Wizard-Orca-3B-gguf', model_type='llama', model_file='q4_1-wizard-orca-3b.gguf', **vars(cpu_config)) # **asdict(CtransRunConfig_cpu())
# #model = ctransformers.AutoModelForCausalLM.from_pretrained('TheBloke/Mistral-7B-OpenOrca-GGUF', model_type='mistral', model_file='mistral-7b-openorca.Q4_K_M.gguf', **vars(cpu_config), hf=True) # **asdict(CtransRunConfig_cpu())
# #model = ctransformers.AutoModelForCausalLM.from_pretrained('TheBloke/OpenHermes-2.5-Mistral-7B-16k-GGUF', model_type='mistral', model_file='openhermes-2.5-mistral-7b-16k.Q4_K_M.gguf', **vars(gpu_config), hf=True) # **asdict(CtransRunConfig_cpu())
# model = ctransformers.AutoModelForCausalLM.from_pretrained('NousResearch/Nous-Capybara-7B-V1.9-GGUF', model_type='mistral', model_file='Capybara-7B-V1.9-Q5_K_M.gguf', **vars(gpu_config), hf=True) # **asdict(CtransRunConfig_cpu())
# #tokenizer = ctransformers.AutoTokenizer.from_pretrained(model)
# tokenizer = AutoTokenizer.from_pretrained("NousResearch/Nous-Capybara-7B-V1.9")
# summariser = pipeline("text-generation", model=model, tokenizer=tokenizer) # model
# #model = []
# #tokenizer = []
# #summariser = []
# if model_type == "Flan T5 Large Stacked Samsum 1k":
# # Huggingface chat model
# hf_checkpoint = 'stacked-summaries/flan-t5-large-stacked-samsum-1024'#'declare-lab/flan-alpaca-base' # # #
# summariser, tokenizer, model_type = create_hf_model(model_name = hf_checkpoint)
# if model_type == "Long T5 Global Base 16k Book Summary":
# # Huggingface chat model
# hf_checkpoint = 'pszemraj/long-t5-tglobal-base-16384-book-summary' #'philschmid/flan-t5-small-stacked-samsum'#'declare-lab/flan-alpaca-base' # # #
# summariser, tokenizer, model_type = create_hf_model(model_name = hf_checkpoint)
# chatf.model = summariser
# chatf.tokenizer = tokenizer
# chatf.model_type = model_type
# load_confirmation = "Finished loading model: " + model_type
# print(load_confirmation)
# return model_type, load_confirmation, model_type