Spaces:
Running
Running
File size: 27,188 Bytes
4effac0 04a15c5 4effac0 e1c1f68 4effac0 04a15c5 4effac0 04a15c5 4effac0 04a15c5 4effac0 381f959 4effac0 381f959 4effac0 04a15c5 4effac0 0a543a0 4effac0 e1c1f68 4effac0 04a15c5 4effac0 04a15c5 0a543a0 04a15c5 4effac0 87306c7 4effac0 0a543a0 4effac0 87306c7 4effac0 0a543a0 04a15c5 0a543a0 4effac0 e1c1f68 4effac0 e1c1f68 4effac0 381f959 e1c1f68 4effac0 e1c1f68 4effac0 e1c1f68 4effac0 381f959 e1c1f68 4effac0 e1c1f68 4effac0 e1c1f68 4effac0 e1c1f68 4effac0 e1c1f68 4effac0 e1c1f68 4effac0 e1c1f68 4effac0 04a15c5 4effac0 04a15c5 4effac0 e1c1f68 4effac0 e1c1f68 4effac0 e1c1f68 4effac0 381f959 e1c1f68 381f959 4effac0 381f959 4effac0 381f959 4effac0 381f959 4effac0 e1c1f68 4effac0 e1c1f68 4effac0 e1c1f68 4effac0 e1c1f68 4effac0 d80c8f5 381f959 d80c8f5 381f959 4effac0 d80c8f5 4effac0 e1c1f68 04a15c5 e1c1f68 d80c8f5 e1c1f68 d80c8f5 e1c1f68 4effac0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 |
# Dendrograms will not work with the latest version of scipy (1.12.0), so installing the version prior to be safe
#os.system("pip install scipy==1.11.4")
import gradio as gr
from datetime import datetime
import pandas as pd
import numpy as np
import time
from bertopic import BERTopic
from funcs.clean_funcs import initial_clean
from funcs.anonymiser import expand_sentences_spacy
from funcs.helper_functions import read_file, zip_folder, delete_files_in_folder, save_topic_outputs
from funcs.embeddings import make_or_load_embeddings
from funcs.bertopic_vis_documents import visualize_documents_custom, visualize_hierarchical_documents_custom, hierarchical_topics_custom, visualize_hierarchy_custom
from sentence_transformers import SentenceTransformer
from sklearn.pipeline import make_pipeline
from sklearn.decomposition import TruncatedSVD
from sklearn.feature_extraction.text import TfidfVectorizer
import funcs.anonymiser as anon
from umap import UMAP
from torch import cuda, backends, version
# Default seed, can be changed in number selection on options page
random_seed = 42
# Check for torch cuda
# If you want to disable cuda for testing purposes
#os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
print("Is CUDA enabled? ", cuda.is_available())
print("Is a CUDA device available on this computer?", backends.cudnn.enabled)
if cuda.is_available():
torch_device = "gpu"
print("Cuda version installed is: ", version.cuda)
low_resource_mode = "No"
#os.system("nvidia-smi")
else:
torch_device = "cpu"
low_resource_mode = "Yes"
print("Device used is: ", torch_device)
today = datetime.now().strftime("%d%m%Y")
today_rev = datetime.now().strftime("%Y%m%d")
# Load embeddings
embeddings_name = "mixedbread-ai/mxbai-embed-large-v1" #"BAAI/large-small-en-v1.5" #"jinaai/jina-embeddings-v2-base-en"
# LLM model used for representing topics
hf_model_name = "QuantFactory/Phi-3-mini-128k-instruct-GGUF"#'second-state/stablelm-2-zephyr-1.6b-GGUF' #'TheBloke/phi-2-orange-GGUF' #'NousResearch/Nous-Capybara-7B-V1.9-GGUF'
hf_model_file = "Phi-3-mini-128k-instruct.Q4_K_M.gguf"#'stablelm-2-zephyr-1_6b-Q5_K_M.gguf' # 'phi-2-orange.Q5_K_M.gguf' #'Capybara-7B-V1.9-Q5_K_M.gguf'
def pre_clean(data, in_colnames, data_file_name_no_ext, custom_regex, clean_text, drop_duplicate_text, anonymise_drop, sentence_split_drop, progress=gr.Progress(track_tqdm=True)):
output_text = ""
output_list = []
progress(0, desc = "Cleaning data")
if not in_colnames:
error_message = "Please enter one column name to use for cleaning and finding topics."
print(error_message)
return error_message, None, data_file_name_no_ext, None, None
all_tic = time.perf_counter()
output_list = []
#file_list = [string.name for string in in_files]
in_colnames_list_first = in_colnames[0]
if clean_text == "Yes":
clean_tic = time.perf_counter()
print("Starting data clean.")
data_file_name_no_ext = data_file_name_no_ext + "_clean"
if not custom_regex.empty:
data[in_colnames_list_first] = initial_clean(data[in_colnames_list_first], custom_regex.iloc[:, 0].to_list())
else:
data[in_colnames_list_first] = initial_clean(data[in_colnames_list_first], [])
clean_toc = time.perf_counter()
clean_time_out = f"Cleaning the text took {clean_toc - clean_tic:0.1f} seconds."
print(clean_time_out)
if drop_duplicate_text == "Yes":
progress(0.3, desc= "Drop duplicates - remove short texts")
data_file_name_no_ext = data_file_name_no_ext + "_dedup"
#print("Removing duplicates and short entries from data")
#print("Data shape before: ", data.shape)
data[in_colnames_list_first] = data[in_colnames_list_first].str.strip()
data = data[data[in_colnames_list_first].str.len() >= 50]
data = data.drop_duplicates(subset = in_colnames_list_first).dropna(subset= in_colnames_list_first).reset_index()
#print("Data shape after duplicate/null removal: ", data.shape)
if anonymise_drop == "Yes":
progress(0.6, desc= "Anonymising data")
data_file_name_no_ext = data_file_name_no_ext + "_anon"
anon_tic = time.perf_counter()
data_anon_col, anonymisation_success = anon.anonymise_script(data, in_colnames_list_first, anon_strat="redact")
data[in_colnames_list_first] = data_anon_col
print(anonymisation_success)
anon_toc = time.perf_counter()
time_out = f"Anonymising text took {anon_toc - anon_tic:0.1f} seconds"
if sentence_split_drop == "Yes":
progress(0.6, desc= "Splitting text into sentences")
data_file_name_no_ext = data_file_name_no_ext + "_split"
anon_tic = time.perf_counter()
data = expand_sentences_spacy(data, in_colnames_list_first)
data = data[data[in_colnames_list_first].str.len() >= 5] # Keep only rows with at least 5 characters
anon_toc = time.perf_counter()
time_out = f"Anonymising text took {anon_toc - anon_tic:0.1f} seconds"
out_data_name = data_file_name_no_ext + "_" + today_rev + ".csv"
data.to_csv(out_data_name)
output_list.append(out_data_name)
all_toc = time.perf_counter()
time_out = f"All processes took {all_toc - all_tic:0.1f} seconds."
print(time_out)
output_text = "Data clean completed."
return output_text, output_list, data, data_file_name_no_ext
def extract_topics(data, in_files, min_docs_slider, in_colnames, max_topics_slider, candidate_topics, data_file_name_no_ext, custom_labels_df, return_intermediate_files, embeddings_super_compress, low_resource_mode, save_topic_model, embeddings_out, embeddings_type_state, zero_shot_similarity, random_seed, calc_probs, vectoriser_state, progress=gr.Progress(track_tqdm=True)):
all_tic = time.perf_counter()
progress(0, desc= "Loading data")
output_list = []
file_list = [string.name for string in in_files]
if calc_probs == "No":
calc_probs = False
elif calc_probs == "Yes":
print("Calculating all probabilities.")
calc_probs = True
if not in_colnames:
error_message = "Please enter one column name to use for cleaning and finding topics."
print(error_message)
return error_message, None, data_file_name_no_ext, embeddings_out, embeddings_type_state, data_file_name_no_ext, None, None, vectoriser_state, []
in_colnames_list_first = in_colnames[0]
docs = list(data[in_colnames_list_first])
# Check if embeddings are being loaded in
progress(0.2, desc= "Loading/creating embeddings")
print("Low resource mode: ", low_resource_mode)
if low_resource_mode == "No":
print("Using high resource embedding model")
# Define a list of possible local locations to search for the model
local_embeddings_locations = [
"model/embed/", # Potential local location
"/model/embed/", # Potential location in Docker container
"/home/user/app/model/embed/" # This is inside a Docker container
]
# Attempt to load the model from each local location
for location in local_embeddings_locations:
try:
embedding_model = SentenceTransformer(location, truncate_dim=512)
print(f"Found local model installation at: {location}")
break # Exit the loop if the model is found
except Exception as e:
print(f"Failed to load model from {location}: {e}")
continue
else:
# If the loop completes without finding the model in any local location
embedding_model = SentenceTransformer(embeddings_name, truncate_dim=512)
print("Could not find local model installation. Downloading from Huggingface")
#embedding_model = SentenceTransformer(embeddings_name, truncate_dim=512)
# If tfidf embeddings currently exist, wipe these empty
if embeddings_type_state == "tfidf":
embeddings_out = np.array([])
embeddings_type_state = "large"
# UMAP model uses Bertopic defaults
umap_model = UMAP(n_neighbors=15, n_components=5, min_dist=0.0, metric='cosine', low_memory=False, random_state=random_seed)
else:
print("Choosing low resource TF-IDF model.")
embedding_model = make_pipeline(
TfidfVectorizer(),
TruncatedSVD(100, random_state=random_seed)
)
# If large embeddings currently exist, wipe these empty, then rename embeddings type
if embeddings_type_state == "large":
embeddings_out = np.array([])
embeddings_type_state = "tfidf"
#umap_model = TruncatedSVD(n_components=5, random_state=random_seed)
# UMAP model uses Bertopic defaults
umap_model = UMAP(n_neighbors=15, n_components=5, min_dist=0.0, metric='cosine', low_memory=True, random_state=random_seed)
embeddings_out = make_or_load_embeddings(docs, file_list, embeddings_out, embedding_model, embeddings_super_compress, low_resource_mode)
# This is saved as a Gradio state object
vectoriser_model = vectoriser_state
progress(0.3, desc= "Embeddings loaded. Creating BERTopic model")
fail_error_message = "Topic model creation failed. Try reducing minimum documents per topic on the slider above (try 15 or less), then click 'Extract topics' again. If that doesn't work, try running the first two clean steps on your data first (see Clean data above) to ensure there are no NaNs/missing texts in your data."
if not candidate_topics:
try:
topic_model = BERTopic( embedding_model=embedding_model,
vectorizer_model=vectoriser_model,
umap_model=umap_model,
min_topic_size = min_docs_slider,
nr_topics = max_topics_slider,
calculate_probabilities=calc_probs,
verbose = True)
assigned_topics, probs = topic_model.fit_transform(docs, embeddings_out)
if calc_probs == True:
topics_probs_out = pd.DataFrame(topic_model.probabilities_)
topics_probs_out_name = "topic_full_probs_" + data_file_name_no_ext + "_" + today_rev + ".csv"
topics_probs_out.to_csv(topics_probs_out_name)
output_list.append(topics_probs_out_name)
except Exception as error:
print(error)
print(fail_error_message)
return fail_error_message, output_list, embeddings_out, embeddings_type_state, data_file_name_no_ext, None, docs, vectoriser_model, []
# Do this if you have pre-defined topics
else:
if low_resource_mode == "Yes":
error_message = "Zero shot topic modelling currently not compatible with low-resource embeddings. Please change this option to 'No' on the options tab and retry."
print(error_message)
return error_message, output_list, embeddings_out, embeddings_type_state, data_file_name_no_ext, None, docs, vectoriser_model, []
zero_shot_topics = read_file(candidate_topics.name)
zero_shot_topics_lower = list(zero_shot_topics.iloc[:, 0].str.lower())
try:
topic_model = BERTopic( embedding_model=embedding_model, #embedding_model_pipe, # for Jina
vectorizer_model=vectoriser_model,
umap_model=umap_model,
min_topic_size = min_docs_slider,
nr_topics = max_topics_slider,
zeroshot_topic_list = zero_shot_topics_lower,
zeroshot_min_similarity = zero_shot_similarity, # 0.7
calculate_probabilities=calc_probs,
verbose = True)
assigned_topics, probs = topic_model.fit_transform(docs, embeddings_out)
if calc_probs == True:
topics_probs_out = pd.DataFrame(topic_model.probabilities_)
topics_probs_out_name = "topic_full_probs_" + data_file_name_no_ext + "_" + today_rev + ".csv"
topics_probs_out.to_csv(topics_probs_out_name)
output_list.append(topics_probs_out_name)
except Exception as error:
print("An exception occurred:", error)
print(fail_error_message)
return fail_error_message, output_list, embeddings_out, embeddings_type_state, data_file_name_no_ext, None, docs, vectoriser_model, []
# For some reason, zero topic modelling exports assigned topics as a np.array instead of a list. Converting it back here.
if isinstance(assigned_topics, np.ndarray):
assigned_topics = assigned_topics.tolist()
# Zero shot modelling is a model merge, which wipes the c_tf_idf part of the resulting model completely. To get hierarchical modelling to work, we need to recreate this part of the model with the CountVectorizer options used to create the initial model. Since with zero shot, we are merging two models that have exactly the same set of documents, the vocubulary should be the same, and so recreating the cf_tf_idf component in this way shouldn't be a problem. Discussion here, and below based on Maarten's suggested code: https://github.com/MaartenGr/BERTopic/issues/1700
# Get document info
doc_dets = topic_model.get_document_info(docs)
documents_per_topic = doc_dets.groupby(['Topic'], as_index=False).agg({'Document': ' '.join})
# Assign CountVectorizer to merged model
topic_model.vectorizer_model = vectoriser_model
# Re-calculate c-TF-IDF
c_tf_idf, _ = topic_model._c_tf_idf(documents_per_topic)
topic_model.c_tf_idf_ = c_tf_idf
###
# Check we have topics
if not assigned_topics:
return "No topics found.", output_list, embeddings_out, embeddings_type_state, data_file_name_no_ext, topic_model, docs, vectoriser_model,[]
else:
print("Topic model created.")
# Tidy up topic label format a bit to have commas and spaces by default
new_topic_labels = topic_model.generate_topic_labels(nr_words=3, separator=", ")
topic_model.set_topic_labels(new_topic_labels)
# Replace current topic labels if new ones loaded in
if not custom_labels_df.empty:
#custom_label_list = list(custom_labels_df.iloc[:,0])
custom_label_list = [label.replace("\n", "") for label in custom_labels_df.iloc[:,0]]
topic_model.set_topic_labels(custom_label_list)
print("Custom topics: ", topic_model.custom_labels_)
# Outputs
output_list, output_text = save_topic_outputs(topic_model, data_file_name_no_ext, output_list, docs, save_topic_model)
# If you want to save your embedding files
if return_intermediate_files == "Yes":
print("Saving embeddings to file")
if low_resource_mode == "Yes":
embeddings_file_name = data_file_name_no_ext + '_' + 'tfidf_embeddings.npz'
else:
if embeddings_super_compress == "No":
embeddings_file_name = data_file_name_no_ext + '_' + 'large_embeddings.npz'
else:
embeddings_file_name = data_file_name_no_ext + '_' + 'large_embeddings_compress.npz'
np.savez_compressed(embeddings_file_name, embeddings_out)
output_list.append(embeddings_file_name)
all_toc = time.perf_counter()
time_out = f"All processes took {all_toc - all_tic:0.1f} seconds."
print(time_out)
return output_text, output_list, embeddings_out, embeddings_type_state, data_file_name_no_ext, topic_model, docs, vectoriser_model, assigned_topics
def reduce_outliers(topic_model, docs, embeddings_out, data_file_name_no_ext, assigned_topics, vectoriser_model, save_topic_model, progress=gr.Progress(track_tqdm=True)):
progress(0, desc= "Preparing data")
output_list = []
all_tic = time.perf_counter()
# This step not necessary?
#assigned_topics, probs = topic_model.fit_transform(docs, embeddings_out)
if isinstance(assigned_topics, np.ndarray):
assigned_topics = assigned_topics.tolist()
# Reduce outliers if required, then update representation
progress(0.2, desc= "Reducing outliers")
print("Reducing outliers.")
# Calculate the c-TF-IDF representation for each outlier document and find the best matching c-TF-IDF topic representation using cosine similarity.
assigned_topics = topic_model.reduce_outliers(docs, assigned_topics, strategy="embeddings")
# Then, update the topics to the ones that considered the new data
progress(0.6, desc= "Updating original model")
topic_model.update_topics(docs, topics=assigned_topics, vectorizer_model = vectoriser_model)
# Tidy up topic label format a bit to have commas and spaces by default
new_topic_labels = topic_model.generate_topic_labels(nr_words=3, separator=", ")
topic_model.set_topic_labels(new_topic_labels)
print("Finished reducing outliers.")
#progress(0.7, desc= "Replacing topic names with LLMs if necessary")
#topic_dets = topic_model.get_topic_info()
# # Replace original labels with LLM labels
# if "LLM" in topic_model.get_topic_info().columns:
# llm_labels = [label[0][0].split("\n")[0] for label in topic_model.get_topics(full=True)["LLM"].values()]
# topic_model.set_topic_labels(llm_labels)
# else:
# topic_model.set_topic_labels(list(topic_dets["Name"]))
# Outputs
progress(0.9, desc= "Saving to file")
output_list, output_text = save_topic_outputs(topic_model, data_file_name_no_ext, output_list, docs, save_topic_model)
all_toc = time.perf_counter()
time_out = f"All processes took {all_toc - all_tic:0.1f} seconds"
print(time_out)
return output_text, output_list, topic_model
def represent_topics(topic_model, docs, data_file_name_no_ext, low_resource_mode, save_topic_model, representation_type, vectoriser_model, progress=gr.Progress(track_tqdm=True)):
from funcs.representation_model import create_representation_model, llm_config, chosen_start_tag
output_list = []
all_tic = time.perf_counter()
progress(0.1, desc= "Loading model and creating new representation")
representation_model = create_representation_model(representation_type, llm_config, hf_model_name, hf_model_file, chosen_start_tag, low_resource_mode)
progress(0.3, desc= "Updating existing topics")
topic_model.update_topics(docs, vectorizer_model=vectoriser_model, representation_model=representation_model)
topic_dets = topic_model.get_topic_info()
# Replace original labels with LLM labels
if representation_type == "LLM":
llm_labels = [label[0].split("\n")[0] for label in topic_dets["LLM"]]
topic_model.set_topic_labels(llm_labels)
label_list_file_name = data_file_name_no_ext + '_llm_topic_list_' + today_rev + '.csv'
llm_labels_df = pd.DataFrame(data={"Label":llm_labels})
llm_labels_df.to_csv(label_list_file_name, index=None)
output_list.append(label_list_file_name)
else:
new_topic_labels = topic_model.generate_topic_labels(nr_words=3, separator=", ", aspect = representation_type)
topic_model.set_topic_labels(new_topic_labels)
# Outputs
progress(0.8, desc= "Saving outputs")
output_list, output_text = save_topic_outputs(topic_model, data_file_name_no_ext, output_list, docs, save_topic_model)
all_toc = time.perf_counter()
time_out = f"All processes took {all_toc - all_tic:0.1f} seconds"
print(time_out)
return output_text, output_list, topic_model
def visualise_topics(topic_model, data, data_file_name_no_ext, low_resource_mode, embeddings_out, in_label, in_colnames, legend_label, sample_prop, visualisation_type_radio, random_seed, progress=gr.Progress(track_tqdm=True)):
progress(0, desc= "Preparing data for visualisation")
output_list = []
vis_tic = time.perf_counter()
if not visualisation_type_radio:
return "Please choose a visualisation type above.", output_list, None, None
# Get topic labels
if in_label:
in_label_list_first = in_label[0]
else:
return "Label column not found. Please enter this above.", output_list, None, None
# Get docs
if in_colnames:
in_colnames_list_first = in_colnames[0]
else:
return "Label column not found. Please enter this on the data load tab.", output_list, None, None
docs = list(data[in_colnames_list_first].str.lower())
# Make sure format of input series is good
data[in_label_list_first] = data[in_label_list_first].fillna('').astype(str)
label_list = list(data[in_label_list_first])
topic_dets = topic_model.get_topic_info()
# Replace original labels with another representation if specified
if legend_label:
topic_dets = topic_model.get_topics(full=True)
if legend_label in topic_dets:
labels = [topic_dets[legend_label].values()]
labels = [str(v) for v in labels]
topic_model.set_topic_labels(labels)
# Pre-reduce embeddings for visualisation purposes
if low_resource_mode == "No":
reduced_embeddings = UMAP(n_neighbors=15, n_components=2, min_dist=0.0, metric='cosine', random_state=random_seed).fit_transform(embeddings_out)
else:
reduced_embeddings = TruncatedSVD(2, random_state=random_seed).fit_transform(embeddings_out)
progress(0.5, desc= "Creating visualisation (this can take a while)")
# Visualise the topics:
print("Creating visualisation")
# "Topic document graph", "Hierarchical view"
if visualisation_type_radio == "Topic document graph":
topics_vis = visualize_documents_custom(topic_model, docs, hover_labels = label_list, reduced_embeddings=reduced_embeddings, hide_annotations=True, hide_document_hover=False, custom_labels=True, sample = sample_prop, width= 1200, height = 750)
topics_vis_name = data_file_name_no_ext + '_' + 'vis_topic_docs_' + today_rev + '.html'
topics_vis.write_html(topics_vis_name)
output_list.append(topics_vis_name)
topics_vis_2 = topic_model.visualize_heatmap(custom_labels=True, width= 1200, height = 1200)
topics_vis_2_name = data_file_name_no_ext + '_' + 'vis_heatmap_' + today_rev + '.html'
topics_vis_2.write_html(topics_vis_2_name)
output_list.append(topics_vis_2_name)
elif visualisation_type_radio == "Hierarchical view":
hierarchical_topics = hierarchical_topics_custom(topic_model, docs)
# Print topic tree - may get encoding errors, so doing try except
try:
tree = topic_model.get_topic_tree(hierarchical_topics, tight_layout = True)
tree_name = data_file_name_no_ext + '_' + 'vis_hierarchy_tree_' + today_rev + '.txt'
with open(tree_name, "w") as file:
# Write the string to the file
file.write(tree)
output_list.append(tree_name)
except Exception as error:
print("An exception occurred when making topic tree document, skipped:", error)
# Save new hierarchical topic model to file
hierarchical_topics_name = data_file_name_no_ext + '_' + 'vis_hierarchy_topics_dist_' + today_rev + '.csv'
hierarchical_topics.to_csv(hierarchical_topics_name, index = None)
output_list.append(hierarchical_topics_name)
#try:
topics_vis, hierarchy_df, hierarchy_topic_names = visualize_hierarchical_documents_custom(topic_model, docs, label_list, hierarchical_topics, hide_annotations=True, reduced_embeddings=reduced_embeddings, sample = sample_prop, hide_document_hover= False, custom_labels=True, width= 1200, height = 750)
topics_vis_2 = visualize_hierarchy_custom(topic_model, hierarchical_topics=hierarchical_topics, width= 1200, height = 750)
# Write hierarchical topics levels to df
hierarchy_df_name = data_file_name_no_ext + '_' + 'hierarchy_topics_df_' + today_rev + '.csv'
hierarchy_df.to_csv(hierarchy_df_name, index = None)
output_list.append(hierarchy_df_name)
# Write hierarchical topics names to df
hierarchy_topic_names_name = data_file_name_no_ext + '_' + 'hierarchy_topics_names_' + today_rev + '.csv'
hierarchy_topic_names.to_csv(hierarchy_topic_names_name, index = None)
output_list.append(hierarchy_topic_names_name)
#except:
# error_message = "Visualisation preparation failed. Perhaps you need more topics to create the full hierarchy (more than 10)?"
# return error_message, output_list, None, None
topics_vis_name = data_file_name_no_ext + '_' + 'vis_hierarchy_topic_doc_' + today_rev + '.html'
topics_vis.write_html(topics_vis_name)
output_list.append(topics_vis_name)
topics_vis_2_name = data_file_name_no_ext + '_' + 'vis_hierarchy_' + today_rev + '.html'
topics_vis_2.write_html(topics_vis_2_name)
output_list.append(topics_vis_2_name)
all_toc = time.perf_counter()
time_out = f"Creating visualisation took {all_toc - vis_tic:0.1f} seconds"
print(time_out)
return time_out, output_list, topics_vis, topics_vis_2
def save_as_pytorch_model(topic_model, data_file_name_no_ext , progress=gr.Progress(track_tqdm=True)):
if not topic_model:
return "No Pytorch model found.", None
progress(0, desc= "Saving topic model in Pytorch format")
output_list = []
topic_model_save_name_folder = "output_model/" + data_file_name_no_ext + "_topics_" + today_rev# + ".safetensors"
topic_model_save_name_zip = topic_model_save_name_folder + ".zip"
# Clear folder before replacing files
delete_files_in_folder(topic_model_save_name_folder)
topic_model.save(topic_model_save_name_folder, serialization='pytorch', save_embedding_model=True, save_ctfidf=False)
# Zip file example
zip_folder(topic_model_save_name_folder, topic_model_save_name_zip)
output_list.append(topic_model_save_name_zip)
return "Model saved in Pytorch format.", output_list
|