Spaces:
Running
Running
File size: 9,893 Bytes
4effac0 9dbf344 4cfed8e 9dbf344 9eeba1e b4510a6 9dbf344 4effac0 0a177ca 4effac0 0a177ca 4effac0 9dbf344 5d87c3c b4510a6 9dbf344 b4510a6 9dbf344 b4510a6 9dbf344 b4510a6 9dbf344 5d87c3c b4510a6 9dbf344 b4510a6 9dbf344 5d87c3c 9dbf344 5d87c3c b4510a6 9dbf344 9c6425d 5d87c3c b4510a6 9dbf344 5d87c3c 9dbf344 9c6425d 5d87c3c b4510a6 9c6425d b4510a6 9c6425d b4510a6 5d87c3c 9eeba1e b4510a6 9dbf344 381f959 9dbf344 4cfed8e b4510a6 4effac0 b4510a6 356791c b4510a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import sys
import os
import zipfile
import re
import pandas as pd
import gradio as gr
import gzip
import pickle
import numpy as np
from bertopic import BERTopic
from datetime import datetime
today = datetime.now().strftime("%d%m%Y")
today_rev = datetime.now().strftime("%Y%m%d")
# Log terminal output: https://github.com/gradio-app/gradio/issues/2362
class Logger:
def __init__(self, filename):
self.terminal = sys.stdout
self.log = open(filename, "w")
def write(self, message):
self.terminal.write(message)
self.log.write(message)
def flush(self):
self.terminal.flush()
self.log.flush()
def isatty(self):
return False
#sys.stdout = Logger("output.log")
# def read_logs():
# sys.stdout.flush()
# with open("output.log", "r") as f:
# return f.read()
def detect_file_type(filename):
"""Detect the file type based on its extension."""
if (filename.endswith('.csv')) | (filename.endswith('.csv.gz')) | (filename.endswith('.zip')):
return 'csv'
elif filename.endswith('.xlsx'):
return 'xlsx'
elif filename.endswith('.parquet'):
return 'parquet'
elif filename.endswith('.pkl.gz'):
return 'pkl.gz'
elif filename.endswith('.pkl'):
return 'pkl'
elif filename.endswith('.npz'):
return 'npz'
else:
raise ValueError("Unsupported file type.")
def read_file(filename):
"""Read the file based on its detected type."""
file_type = detect_file_type(filename)
print("Loading in file")
if file_type == 'csv':
file = pd.read_csv(filename, low_memory=False)#.reset_index().drop(["index", "Unnamed: 0"], axis=1, errors="ignore")
elif file_type == 'xlsx':
file = pd.read_excel(filename)#.reset_index().drop(["index", "Unnamed: 0"], axis=1, errors="ignore")
elif file_type == 'parquet':
file = pd.read_parquet(filename)#.reset_index().drop(["index", "Unnamed: 0"], axis=1, errors="ignore")
elif file_type == 'pkl.gz':
with gzip.open(filename, 'rb') as file:
file = pickle.load(file)
#file = pd.read_pickle(filename)
elif file_type == 'pkl':
file = BERTopic.load(filename)
elif file_type == 'npz':
file = np.load(filename)['arr_0']
# If embedding files have 'super_compress' in the title, they have been multiplied by 100 before save
if "compress" in filename:
file /= 100
print("File load complete")
return file
def initial_file_load(in_file):
'''
When file is loaded, update the column dropdown choices and write to relevant data states.
'''
new_choices = []
concat_choices = []
custom_labels = pd.DataFrame()
topic_model = None
embeddings = np.array([])
file_list = [string.name for string in in_file]
data_file_names = [string for string in file_list if "npz" not in string.lower() and "pkl" not in string.lower() and "topic_list.csv" not in string.lower()]
if data_file_names:
data_file_name = data_file_names[0]
df = read_file(data_file_name)
data_file_name_no_ext = get_file_path_end(data_file_name)
new_choices = list(df.columns)
concat_choices.extend(new_choices)
output_text = "Data file loaded."
else:
error = "No data file provided."
print(error)
output_text = error
model_file_names = [string for string in file_list if "pkl" in string.lower()]
if model_file_names:
model_file_name = model_file_names[0]
topic_model = read_file(model_file_name)
output_text = "Bertopic model loaded."
embedding_file_names = [string for string in file_list if "npz" in string.lower()]
if embedding_file_names:
embedding_file_name = embedding_file_names[0]
embeddings = read_file(embedding_file_name)
output_text = "Embeddings loaded."
label_file_names = [string for string in file_list if "topic_list" in string.lower()]
if label_file_names:
label_file_name = label_file_names[0]
custom_labels = read_file(label_file_name)
output_text = "Labels loaded."
#The np.array([]) at the end is for clearing the embedding state when a new file is loaded
return gr.Dropdown(choices=concat_choices), gr.Dropdown(choices=concat_choices), df, output_text, topic_model, embeddings, data_file_name_no_ext, custom_labels
def custom_regex_load(in_file):
'''
When file is loaded, update the column dropdown choices and write to relevant data states.
'''
custom_regex = pd.DataFrame()
file_list = [string.name for string in in_file]
regex_file_names = [string for string in file_list if "csv" in string.lower()]
if regex_file_names:
regex_file_name = regex_file_names[0]
custom_regex = read_file(regex_file_name)
#regex_file_name_no_ext = get_file_path_end(regex_file_name)
output_text = "Data file loaded."
print(output_text)
else:
error = "No regex file provided."
print(error)
output_text = error
return custom_regex
return custom_regex
def get_file_path_end(file_path):
# First, get the basename of the file (e.g., "example.txt" from "/path/to/example.txt")
basename = os.path.basename(file_path)
# Then, split the basename and its extension and return only the basename without the extension
filename_without_extension, _ = os.path.splitext(basename)
#print(filename_without_extension)
return filename_without_extension
def get_file_path_end_with_ext(file_path):
match = re.search(r'(.*[\/\\])?(.+)$', file_path)
filename_end = match.group(2) if match else ''
return filename_end
def dummy_function(in_colnames):
"""
A dummy function that exists just so that dropdown updates work correctly.
"""
return None
# Zip the above to export file
def zip_folder(folder_path, output_zip_file):
# Create a ZipFile object in write mode
with zipfile.ZipFile(output_zip_file, 'w', zipfile.ZIP_DEFLATED) as zipf:
# Walk through the directory
for root, dirs, files in os.walk(folder_path):
for file in files:
# Create a complete file path
file_path = os.path.join(root, file)
# Add file to the zip file
# The arcname argument sets the archive name, i.e., the name within the zip file
zipf.write(file_path, arcname=os.path.relpath(file_path, folder_path))
def delete_files_in_folder(folder_path):
# Check if the folder exists
if not os.path.exists(folder_path):
print(f"The folder {folder_path} does not exist.")
return
# Iterate over all files in the folder and remove each
for filename in os.listdir(folder_path):
file_path = os.path.join(folder_path, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
else:
print(f"Skipping {file_path} as it is a directory")
except Exception as e:
print(f"Failed to delete {file_path}. Reason: {e}")
def save_topic_outputs(topic_model, data_file_name_no_ext, output_list, docs, save_topic_model, progress=gr.Progress()):
progress(0.7, desc= "Checking data")
topic_dets = topic_model.get_topic_info()
if topic_dets.shape[0] == 1:
topic_det_output_name = "topic_details_" + data_file_name_no_ext + "_" + today_rev + ".csv"
topic_dets.to_csv(topic_det_output_name)
output_list.append(topic_det_output_name)
return output_list, "No topics found, original file returned"
progress(0.8, desc= "Saving output")
topic_det_output_name = "topic_details_" + data_file_name_no_ext + "_" + today_rev + ".csv"
topic_dets.to_csv(topic_det_output_name)
output_list.append(topic_det_output_name)
doc_det_output_name = "doc_details_" + data_file_name_no_ext + "_" + today_rev + ".csv"
doc_dets = topic_model.get_document_info(docs)[["Document", "Topic", "Name", "Probability", "Representative_document"]]
doc_dets.to_csv(doc_det_output_name)
output_list.append(doc_det_output_name)
if "CustomName" in topic_dets.columns:
topics_text_out_str = str(topic_dets["CustomName"])
else:
topics_text_out_str = str(topic_dets["Name"])
output_text = "Topics: " + topics_text_out_str
# Save topic model to file
if save_topic_model == "Yes":
print("Saving BERTopic model in .pkl format.")
folder_path = "output_model/"
if not os.path.exists(folder_path):
# Create the folder
os.makedirs(folder_path)
topic_model_save_name_pkl = folder_path + data_file_name_no_ext + "_topics_" + today_rev + ".pkl"# + ".safetensors"
topic_model_save_name_zip = topic_model_save_name_pkl + ".zip"
# Clear folder before replacing files
#delete_files_in_folder(topic_model_save_name_pkl)
topic_model.save(topic_model_save_name_pkl, serialization='pickle', save_embedding_model=False, save_ctfidf=False)
# Zip file example
#zip_folder(topic_model_save_name_pkl, topic_model_save_name_zip)
output_list.append(topic_model_save_name_pkl)
return output_list, output_text
|