Spaces:
Running
Running
File size: 6,766 Bytes
4effac0 89c4d20 4effac0 cc495e1 4effac0 1e2bb3e 4effac0 d80c8f5 1e2bb3e 4effac0 cc495e1 4effac0 381f959 89c4d20 cc495e1 4effac0 381f959 89c4d20 cc495e1 89c4d20 1e2bb3e 381f959 55f0ce3 1e2bb3e 89c4d20 1e2bb3e cc495e1 1e2bb3e 89c4d20 cc495e1 1e2bb3e 55f0ce3 89c4d20 55f0ce3 4effac0 381f959 89c4d20 e1c1f68 89c4d20 55f0ce3 89c4d20 55f0ce3 4effac0 55f0ce3 4effac0 89c4d20 4effac0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import re
import string
import unicodedata
import polars as pl
import pandas as pd
import gradio as gr
# Adding custom words to the stopwords
custom_words = []
my_stop_words = custom_words
# #### Some of my cleaning functions
url_pattern = r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+|(?:www\.)[a-zA-Z0-9._-]+\.[a-zA-Z]{2,}'
html_pattern_regex = r'<.*?>|&([a-z0-9]+|#[0-9]{1,6}|#x[0-9a-f]{1,6});|\xa0| '
html_start_pattern_end_dots_regex = r'<(.*?)\.\.'
non_ascii_pattern = r'[^\x00-\x7F]+'
email_pattern_regex = r'\S*@\S*\s?'
num_pattern_regex = r'[0-9]+'
and_sign_regex = r'&'
forward_slash_regex = r'/'
nums_five_more_regex = r'\b\d+[\.|\,]\d+\b|\b[0-9]{5,}\b|\b[0-9]+\s[0-9]+\b' # Should match five digit numbers or more, and also if there are full stops or commas in between
postcode_pattern_regex = r'(\b(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]? ?[0-9][A-Z]{2})|((GIR ?0A{2})\b$)|(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]? ?[0-9]{1}?)$)|(\b(?:[A-Z][A-HJ-Y]?[0-9][0-9A-Z]?)\b$)'
multiple_spaces_regex = r'\s{2,}'
multiple_new_lines_regex = r'(\r\n|\n)+'
multiple_punctuation_regex = r"(\p{P})\p{P}+"
def initial_clean(texts, custom_regex, progress=gr.Progress()):
for text in texts:
if not text or pd.isnull(text):
text = ""
# Normalize unicode characters to decompose any special forms
normalized_text = unicodedata.normalize('NFKC', text)
# Replace smart quotes and special punctuation with standard ASCII equivalents
replacements = {
'β': "'", 'β': "'", 'β': '"', 'β': '"',
'β': '-', 'β': '-', 'β¦': '...', 'β’': '*',
}
# Perform replacements
for old_char, new_char in replacements.items():
normalised_text = normalized_text.replace(old_char, new_char)
text = normalised_text
# Convert to polars Series
texts = pl.Series(texts).str.strip_chars()
# Define a list of patterns and their replacements
patterns = [
(multiple_new_lines_regex, ' '),
(r'\r', ''),
(url_pattern, ' '),
(html_pattern_regex, ' '),
(html_start_pattern_end_dots_regex, ' '),
(non_ascii_pattern, ' '),
(email_pattern_regex, ' '),
(nums_five_more_regex, ' '),
(postcode_pattern_regex, ' '),
(multiple_spaces_regex, ' '),
(multiple_punctuation_regex, "${1}"),
(and_sign_regex, 'and')#,
#(forward_slash_regex, 'or')
]
# Apply each regex replacement
for pattern, replacement in patterns:
texts = texts.str.replace_all(pattern, replacement)
# Convert the series back to a list
texts = texts.to_list()
return texts
# def regex_clean(texts, custom_regex, progress=gr.Progress()):
# texts = pl.Series(texts).str.strip_chars()
# # Allow for custom regex patterns to be removed
# if len(custom_regex) > 0:
# for pattern in custom_regex:
# raw_string_pattern = r'{}'.format(pattern)
# print("Removing regex pattern: ", raw_string_pattern)
# texts = texts.str.replace_all(raw_string_pattern, ' ')
# texts = texts.str.replace_all(multiple_spaces_regex, ' ')
# texts = texts.to_list()
# return texts
def regex_clean(texts, custom_regex, progress=gr.Progress()):
texts = pl.Series(texts).str.strip_chars()
# Allow for custom regex patterns to be removed
if len(custom_regex) > 0:
for pattern in custom_regex:
print("Removing regex pattern:", pattern)
# Method 1: Using polars with regex flags
texts = texts.str.replace_all(pattern, ' ')
# Alternative Method 2: Using Python re directly if needed
#texts = pl.Series([re.sub(pattern, ' ', text, flags=re.DOTALL)
# for text in texts])
# Replace multiple spaces with a single space
texts = texts.str.replace_all(multiple_spaces_regex, ' ')
# Convert series back to a list
texts = texts.to_list()
return texts
def remove_hyphens(text_text):
return re.sub(r'(\w+)-(\w+)-?(\w)?', r'\1 \2 \3', text_text)
def remove_characters_after_tokenization(tokens):
pattern = re.compile('[{}]'.format(re.escape(string.punctuation)))
filtered_tokens = filter(None, [pattern.sub('', token) for token in tokens])
return filtered_tokens
def convert_to_lowercase(tokens):
return [token.lower() for token in tokens if token.isalpha()]
def remove_short_tokens(tokens):
return [token for token in tokens if len(token) > 3]
def remove_dups_text(data_samples_ready, data_samples_clean, data_samples):
# Identify duplicates in the data: https://stackoverflow.com/questions/44191465/efficiently-identify-duplicates-in-large-list-500-000
# Only identifies the second duplicate
seen = set()
dups = []
for i, doi in enumerate(data_samples_ready):
if doi not in seen:
seen.add(doi)
else:
dups.append(i)
#data_samples_ready[dupes[0:]]
# To see a specific duplicated value you know the position of
#matching = [s for s in data_samples_ready if data_samples_ready[83] in s]
#matching
# Remove duplicates only (keep first instance)
#data_samples_ready = list( dict.fromkeys(data_samples_ready) ) # This way would keep one version of the duplicates
### Remove all duplicates including original instance
# Identify ALL duplicates including initial values
# https://stackoverflow.com/questions/11236006/identify-duplicate-values-in-a-list-in-python
from collections import defaultdict
D = defaultdict(list)
for i,item in enumerate(data_samples_ready):
D[item].append(i)
D = {k:v for k,v in D.items() if len(v)>1}
# https://stackoverflow.com/questions/952914/how-to-make-a-flat-list-out-of-a-list-of-lists
L = list(D.values())
flat_list_dups = [item for sublist in L for item in sublist]
# https://stackoverflow.com/questions/11303225/how-to-remove-multiple-indexes-from-a-list-at-the-same-time
for index in sorted(flat_list_dups, reverse=True):
del data_samples_ready[index]
del data_samples_clean[index]
del data_samples[index]
# Remove blanks
data_samples_ready = [i for i in data_samples_ready if i]
data_samples_clean = [i for i in data_samples_clean if i]
data_samples = [i for i in data_samples if i]
return data_samples_ready, data_samples_clean, flat_list_dups, data_samples
|