File size: 1,540 Bytes
ea3ca19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import torch
import gradio as gr
from transformers import CLIPProcessor, CLIPModel

model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")


def similarity(image, text, threshold, order):
    lines = list(map(str.strip, text.splitlines()))
    if len(lines) == 0:
        return "", ""
    inputs = processor(text=lines, images=image, return_tensors="pt", padding=True)
    with torch.no_grad():
        outputs = model(**inputs)
    similarities = outputs.logits_per_image.view(-1)

    # convert to plain list of floats for display
    similarities = [s.item() for s in similarities]

    if order:
        tfm = lambda xs: sorted(xs, reverse=True)
    else:
        tfm = lambda xs: xs

    detections = [(f"{line}: {similarity:0.2f}", "yes" if similarity > threshold else "no") for similarity, line in tfm(zip(similarities, lines))]

    return detections


demo = gr.Interface(
    title="CLIP Explorer",
    description="Input an image and lines of text then press submit to output the image-text similarity scores.",
    fn=similarity,
    inputs=[
        gr.Image(label="Image"),
        gr.TextArea(label="Text descriptions"),
        gr.Slider(0, 40, 26, label="Similarity threshold"),
        gr.Checkbox(value=True, label="Order by similarity score?"),
    ],
    outputs=gr.HighlightedText(label="Image-text similarity scores", color_map={
        "yes": "green",
        "no": "red",
    }),
)

if __name__ == "__main__":
    demo.launch()