File size: 5,984 Bytes
487a211
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f09daf4
487a211
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3b6c35
487a211
 
 
 
7555b41
 
487a211
 
5ce0e23
487a211
 
700b7f5
5489ec4
700b7f5
5489ec4
700b7f5
5489ec4
700b7f5
5489ec4
700b7f5
 
487a211
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7555b41
 
487a211
 
 
 
 
 
 
 
 
 
 
 
 
 
7430d16
487a211
7430d16
487a211
 
 
7430d16
487a211
 
 
7555b41
 
 
 
 
7430d16
 
4a3ee68
cbef338
7555b41
7b2f4f0
 
 
487a211
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
from getpass import getpass
from langchain_openai import OpenAIEmbeddings

from pinecone import Pinecone

from pinecone_text.sparse import SpladeEncoder
from langchain_community.retrievers import PineconeHybridSearchRetriever

import os

from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnableParallel, RunnablePassthrough, Runnable
from langchain_anthropic import ChatAnthropic

import streamlit as st

# Streamlit App Configuration (gets model_name, index_name, namespace_name before needed)
st.set_page_config(page_title="Chat with HiPerGator Docs", page_icon="🟩")
st.markdown("<h1 style='text-align: center;'>Welcome to the HiPerGator Bot. Please type your question below:</h1>", unsafe_allow_html=True)

model_name = "claude-3-haiku-20240307"


# ========== PART 1 ==========
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
ANTHROPIC_API_KEY = os.getenv("ANTHROPIC_API_KEY")
PINE_API_KEY = os.getenv("PINE_API_KEY")

embed = OpenAIEmbeddings(
    model='text-embedding-3-small',
    openai_api_key=OPENAI_API_KEY,
    dimensions = 768
)


# ========== PART 2 ==========
index_name='splade'
namespace_name='HiperGator'
pc = Pinecone(api_key=PINE_API_KEY)
index = pc.Index(index_name)

# ========== PART 3 ==========


splade_encoder = SpladeEncoder()
retriever = PineconeHybridSearchRetriever(
    embeddings=embed, sparse_encoder=splade_encoder, index=index, namespace=namespace_name
)


LANGCHAIN_TRACING_V2 = os.getenv('LANGCHAIN_TRACING_V2')

LANGCHAIN_ENDPOINT = os.getenv('LANGCHAIN_ENDPOINT')

LANGCHAIN_PROJECT = os.getenv('LANGCHAIN_PROJECT')

LANGCHAIN_API_KEY = os.getenv('LANGCHAIN_API_KEY')


# ========== PART 4 ==========
# RAG prompt
template = """You are an expert in HiPerGator (University of Florida's Super Computer) who has access to it's dense documentation. Please use the given context from the documentation to happily assist the user with their question:
Question: {question}
{context}
"""
prompt = ChatPromptTemplate.from_template(template)

# Haiku
model = ChatAnthropic(temperature=0, anthropic_api_key=ANTHROPIC_API_KEY, model_name="claude-3-haiku-20240307")

class SourceDedup(Runnable):
    def invoke(self, input, config=None):
        assert isinstance(input, dict)
        documents = input["context"]
        unique_sources = set()
        unique_documents = []

        for doc in documents:
            source = doc.metadata["source"]
            if source not in unique_sources:
                unique_sources.add(source)
                unique_documents.append(doc)
        input["context"] = unique_documents
        return input

class PassParentContent(Runnable):
    def invoke(self, input, config=None):
        assert isinstance(input, dict)
        documents = input["context"]

        for doc in documents:
          if "parent_content" in doc.metadata:
            doc.page_content = doc.metadata["parent_content"]
        return input

rag_chain = (
    RunnablePassthrough()
    | SourceDedup()
    | PassParentContent()
    | prompt
    | model
    | StrOutputParser()
)

rag_chain_with_source = RunnableParallel(
    {"context": retriever, "question": RunnablePassthrough()}
).assign(answer=rag_chain)

def generate_response(prompt):
    start = "Answer: "
    st.session_state['generated'].append(start)
    yield start

    all_sources = []
    for chunk in rag_chain_with_source.stream(prompt):
    
            if list(chunk.keys())[0] == 'answer':
                st.session_state['generated'][-1] += chunk['answer']
                yield chunk['answer']
    
            elif list(chunk.keys())[0] == 'context':
                pass
                # Sources DO NOT work the same with this code... removing for now.
                sources = chunk['context']
                for thing in chunk['context']:
                    print()
                    print(thing.metadata)
                sources = [doc.metadata['source'] for doc in chunk['context']]
                all_sources.extend(sources)
    
    formatted_response = f"\n\nSources:\n" + "\n".join(all_sources)
    yield formatted_response

# question = "How can I do hybrid search with a pinecone database?"
# answer = generate_response(question)
# print(answer)

# ==================== THE REST OF THE STREAMLIT APP ====================

# Initialize session state variables if they don't exist
if 'generated' not in st.session_state:
    st.session_state['generated'] = []

if 'past' not in st.session_state:
    st.session_state['past'] = []

if 'messages' not in st.session_state:
    st.session_state['messages'] = [{"role": "system", "content": "You are a helpful assistant."}]

if 'total_cost' not in st.session_state:
    st.session_state['total_cost'] = 0.0

def refresh_text():
    with response_container:
        for i in range(len(st.session_state['past'])):
            try:
                user_message_content = st.session_state["past"][i]
                message = st.chat_message("user")
                message.write(user_message_content)
            except:
                print("Past error")
            
            try:
                ai_message_content = st.session_state["generated"][i]
                message = st.chat_message("assistant")
                message.write(ai_message_content)
            except:
                print("Generated Error")

response_container = st.container()
container = st.container()

if prompt := st.chat_input("Ask a question..."):
        st.session_state['past'].append(prompt)
        refresh_text()

        st.session_state['messages'].append({"role": "user", "content": prompt})
        with response_container:
            my_generator = generate_response(prompt)
            message = st.chat_message("assistant")
            message.write_stream(my_generator)

if __name__ == "__main__":
    #result = retriever.get_relevant_documents("foo")
    #print(result[0].page_content)
    pass