Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
def predict_segmentation_with_legend(image):
|
2 |
try:
|
3 |
if model is None:
|
@@ -16,7 +49,6 @@ def predict_segmentation_with_legend(image):
|
|
16 |
class_ids = result.boxes.cls.cpu().numpy().astype(int) if result.boxes else []
|
17 |
|
18 |
image_np = np.array(image).copy()
|
19 |
-
draw = ImageDraw.Draw(image)
|
20 |
|
21 |
try:
|
22 |
font = ImageFont.truetype("DejaVuSans.ttf", 18)
|
@@ -26,16 +58,16 @@ def predict_segmentation_with_legend(image):
|
|
26 |
CONFIDENCE_THRESHOLD = 0.5
|
27 |
|
28 |
if len(boxes) == 0:
|
|
|
29 |
draw.text((10, 10), "No detections", fill="red", font=font)
|
30 |
return image
|
31 |
|
|
|
32 |
indices_to_use = [i for i, s in enumerate(scores) if s >= CONFIDENCE_THRESHOLD]
|
33 |
-
|
34 |
if len(indices_to_use) == 0:
|
35 |
-
|
36 |
-
indices_to_use = [top_idx]
|
37 |
|
38 |
-
#
|
39 |
for i in indices_to_use:
|
40 |
mask = masks[i]
|
41 |
class_id = class_ids[i]
|
@@ -52,12 +84,10 @@ def predict_segmentation_with_legend(image):
|
|
52 |
image_np * 0.5 + color_mask * 0.5, image_np)
|
53 |
|
54 |
final_image = Image.fromarray(image_np.astype(np.uint8)).convert("RGBA")
|
55 |
-
|
56 |
-
# Layer teks transparan
|
57 |
overlay = Image.new("RGBA", final_image.size, (255, 255, 255, 0))
|
58 |
draw_overlay = ImageDraw.Draw(overlay)
|
59 |
|
60 |
-
#
|
61 |
for i in indices_to_use:
|
62 |
box = boxes[i].astype(int).tolist()
|
63 |
score = scores[i]
|
@@ -66,10 +96,9 @@ def predict_segmentation_with_legend(image):
|
|
66 |
color = color_map.get(class_id, (255, 255, 0))
|
67 |
text_color = "white"
|
68 |
|
69 |
-
# Gambar kotak
|
70 |
draw_overlay.rectangle(box, outline=color + (255,), width=2)
|
71 |
|
72 |
-
# Teks dan
|
73 |
label_text = label
|
74 |
score_text = f"Conf: {score:.2f}"
|
75 |
label_size = draw_overlay.textbbox((0, 0), label_text, font=font)
|
@@ -78,7 +107,6 @@ def predict_segmentation_with_legend(image):
|
|
78 |
text_x = max(box[0], 0)
|
79 |
text_y = max(box[1] - (label_size[3] + score_size[3] + 8), 0)
|
80 |
|
81 |
-
# Background teks semi-transparan
|
82 |
draw_overlay.rectangle(
|
83 |
[text_x - 2, text_y - 2,
|
84 |
text_x + max(label_size[2], score_size[2]) + 4,
|
@@ -86,14 +114,12 @@ def predict_segmentation_with_legend(image):
|
|
86 |
fill=(0, 0, 0, 160)
|
87 |
)
|
88 |
|
89 |
-
# Tulis teks
|
90 |
draw_overlay.text((text_x, text_y), label_text, fill=text_color, font=font)
|
91 |
draw_overlay.text((text_x, text_y + label_size[3] + 2), score_text, fill=text_color, font=font)
|
92 |
|
93 |
-
# Gabungkan overlay ke gambar
|
94 |
final_image = Image.alpha_composite(final_image, overlay).convert("RGB")
|
95 |
|
96 |
-
# Buat legenda
|
97 |
legend = Image.new("RGB", (500, 50), (255, 255, 255))
|
98 |
draw_legend = ImageDraw.Draw(legend)
|
99 |
x = 10
|
@@ -102,7 +128,7 @@ def predict_segmentation_with_legend(image):
|
|
102 |
draw_legend.text((x + 25, 10), label, fill="black", font=font)
|
103 |
x += 130
|
104 |
|
105 |
-
# Gabungkan
|
106 |
combined = Image.new("RGB", (final_image.width, final_image.height + 50), (255, 255, 255))
|
107 |
combined.paste(final_image, (0, 0))
|
108 |
combined.paste(legend, (10, final_image.height))
|
@@ -112,3 +138,15 @@ def predict_segmentation_with_legend(image):
|
|
112 |
except Exception as e:
|
113 |
print("❌ Error saat segmentasi:", e)
|
114 |
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image, ImageDraw, ImageFont
|
3 |
+
from ultralytics import YOLO
|
4 |
+
import numpy as np
|
5 |
+
import os
|
6 |
+
|
7 |
+
# === Load Model ===
|
8 |
+
try:
|
9 |
+
model_path = "best.pt"
|
10 |
+
if not os.path.exists(model_path):
|
11 |
+
raise FileNotFoundError(f"❌ File {model_path} tidak ditemukan. Upload 'best.pt' ke root.")
|
12 |
+
model = YOLO(model_path)
|
13 |
+
print("✅ Model loaded successfully!")
|
14 |
+
except Exception as e:
|
15 |
+
print("❌ Gagal load model:", e)
|
16 |
+
model = None
|
17 |
+
|
18 |
+
# === Peta Label dan Warna ===
|
19 |
+
label_map = {
|
20 |
+
0: "coral or rock",
|
21 |
+
1: "pipeline",
|
22 |
+
2: "ripple marks",
|
23 |
+
3: "shipwreck"
|
24 |
+
}
|
25 |
+
|
26 |
+
color_map = {
|
27 |
+
0: (0, 255, 0), # Hijau
|
28 |
+
1: (255, 0, 0), # Merah
|
29 |
+
2: (255, 165, 0), # Oranye
|
30 |
+
3: (0, 0, 255) # Biru
|
31 |
+
}
|
32 |
+
|
33 |
+
# === Fungsi Prediksi dan Visualisasi ===
|
34 |
def predict_segmentation_with_legend(image):
|
35 |
try:
|
36 |
if model is None:
|
|
|
49 |
class_ids = result.boxes.cls.cpu().numpy().astype(int) if result.boxes else []
|
50 |
|
51 |
image_np = np.array(image).copy()
|
|
|
52 |
|
53 |
try:
|
54 |
font = ImageFont.truetype("DejaVuSans.ttf", 18)
|
|
|
58 |
CONFIDENCE_THRESHOLD = 0.5
|
59 |
|
60 |
if len(boxes) == 0:
|
61 |
+
draw = ImageDraw.Draw(image)
|
62 |
draw.text((10, 10), "No detections", fill="red", font=font)
|
63 |
return image
|
64 |
|
65 |
+
# Ambil index dengan skor tertinggi atau di atas threshold
|
66 |
indices_to_use = [i for i, s in enumerate(scores) if s >= CONFIDENCE_THRESHOLD]
|
|
|
67 |
if len(indices_to_use) == 0:
|
68 |
+
indices_to_use = [int(np.argmax(scores))]
|
|
|
69 |
|
70 |
+
# === MASKING ===
|
71 |
for i in indices_to_use:
|
72 |
mask = masks[i]
|
73 |
class_id = class_ids[i]
|
|
|
84 |
image_np * 0.5 + color_mask * 0.5, image_np)
|
85 |
|
86 |
final_image = Image.fromarray(image_np.astype(np.uint8)).convert("RGBA")
|
|
|
|
|
87 |
overlay = Image.new("RGBA", final_image.size, (255, 255, 255, 0))
|
88 |
draw_overlay = ImageDraw.Draw(overlay)
|
89 |
|
90 |
+
# === Gambar box dan label ===
|
91 |
for i in indices_to_use:
|
92 |
box = boxes[i].astype(int).tolist()
|
93 |
score = scores[i]
|
|
|
96 |
color = color_map.get(class_id, (255, 255, 0))
|
97 |
text_color = "white"
|
98 |
|
|
|
99 |
draw_overlay.rectangle(box, outline=color + (255,), width=2)
|
100 |
|
101 |
+
# Teks dan background transparan
|
102 |
label_text = label
|
103 |
score_text = f"Conf: {score:.2f}"
|
104 |
label_size = draw_overlay.textbbox((0, 0), label_text, font=font)
|
|
|
107 |
text_x = max(box[0], 0)
|
108 |
text_y = max(box[1] - (label_size[3] + score_size[3] + 8), 0)
|
109 |
|
|
|
110 |
draw_overlay.rectangle(
|
111 |
[text_x - 2, text_y - 2,
|
112 |
text_x + max(label_size[2], score_size[2]) + 4,
|
|
|
114 |
fill=(0, 0, 0, 160)
|
115 |
)
|
116 |
|
|
|
117 |
draw_overlay.text((text_x, text_y), label_text, fill=text_color, font=font)
|
118 |
draw_overlay.text((text_x, text_y + label_size[3] + 2), score_text, fill=text_color, font=font)
|
119 |
|
|
|
120 |
final_image = Image.alpha_composite(final_image, overlay).convert("RGB")
|
121 |
|
122 |
+
# === Buat legenda ===
|
123 |
legend = Image.new("RGB", (500, 50), (255, 255, 255))
|
124 |
draw_legend = ImageDraw.Draw(legend)
|
125 |
x = 10
|
|
|
128 |
draw_legend.text((x + 25, 10), label, fill="black", font=font)
|
129 |
x += 130
|
130 |
|
131 |
+
# === Gabungkan gambar & legenda ===
|
132 |
combined = Image.new("RGB", (final_image.width, final_image.height + 50), (255, 255, 255))
|
133 |
combined.paste(final_image, (0, 0))
|
134 |
combined.paste(legend, (10, final_image.height))
|
|
|
138 |
except Exception as e:
|
139 |
print("❌ Error saat segmentasi:", e)
|
140 |
return image
|
141 |
+
|
142 |
+
iface = gr.Interface(
|
143 |
+
fn=predict_segmentation_with_legend,
|
144 |
+
inputs=gr.Image(type="pil", label="Upload Citra Side Scan Sonar"),
|
145 |
+
outputs=gr.Image(type="pil", label="Hasil Segmentasi"),
|
146 |
+
title="YOLOv8/YOLOv11 Segmentasi Citra Sonar",
|
147 |
+
description="Upload citra sonar dan dapatkan hasil segmentasi lengkap dengan bounding box, mask, label, confidence, dan legenda warna.",
|
148 |
+
allow_flagging="never"
|
149 |
+
)
|
150 |
+
|
151 |
+
if __name__ == "__main__":
|
152 |
+
iface.launch(share=True)
|