Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,12 +7,11 @@ from ultralytics import YOLO
|
|
7 |
from pathlib import Path
|
8 |
|
9 |
# === Konfigurasi ===
|
10 |
-
model_path = "best.pt"
|
11 |
class_names = ['coral or rock', 'pipeline', 'ripple marks', 'shipwreck']
|
12 |
-
|
13 |
model = YOLO(model_path)
|
14 |
|
15 |
-
# === Fungsi untuk menggambar
|
16 |
def draw_predictions(img, segments, class_ids, confs, color=(255, 0, 0), alpha=0.5):
|
17 |
overlay = img.copy()
|
18 |
for i, seg in enumerate(segments):
|
@@ -21,31 +20,40 @@ def draw_predictions(img, segments, class_ids, confs, color=(255, 0, 0), alpha=0
|
|
21 |
polygon[:, 1] *= img.shape[0]
|
22 |
polygon = polygon.astype(np.int32)
|
23 |
|
24 |
-
|
|
|
|
|
|
|
25 |
cv2.fillPoly(overlay, [polygon], color)
|
|
|
|
|
26 |
x, y, w, h = cv2.boundingRect(polygon)
|
27 |
-
cv2.
|
28 |
-
|
|
|
|
|
|
|
29 |
|
30 |
return cv2.addWeighted(overlay, alpha, img, 1 - alpha, 0)
|
31 |
|
32 |
-
# === Fungsi
|
33 |
-
def
|
34 |
temp_path = "temp.jpg"
|
35 |
image.save(temp_path)
|
36 |
img = cv2.imread(temp_path)
|
37 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
38 |
|
39 |
-
# Prediksi
|
40 |
results = model(temp_path)[0]
|
41 |
segs = [seg.xy for seg in results.masks] if results.masks else []
|
42 |
cls_ids = results.boxes.cls.tolist() if results.boxes else []
|
43 |
confs = results.boxes.conf.tolist() if results.boxes else []
|
44 |
xywh = results.boxes.xywhn.tolist() if results.boxes else []
|
45 |
|
46 |
-
|
|
|
47 |
|
48 |
-
#
|
49 |
rows = []
|
50 |
for i in range(len(cls_ids)):
|
51 |
rows.append({
|
@@ -59,27 +67,25 @@ def process_image_and_generate_report(image):
|
|
59 |
})
|
60 |
|
61 |
df = pd.DataFrame(rows)
|
62 |
-
csv_path = "
|
63 |
df.to_csv(csv_path, index=False)
|
64 |
|
65 |
-
return
|
66 |
|
67 |
-
# === UI
|
68 |
with gr.Blocks() as demo:
|
69 |
-
gr.Markdown("##
|
70 |
-
gr.Markdown("Upload
|
71 |
|
72 |
with gr.Row():
|
73 |
with gr.Column():
|
74 |
image_input = gr.Image(type="pil", label="Upload Image")
|
75 |
-
|
76 |
with gr.Column():
|
77 |
-
|
78 |
-
|
79 |
|
80 |
-
|
81 |
-
inputs=image_input,
|
82 |
-
outputs=[result_image, download_btn])
|
83 |
|
84 |
if __name__ == "__main__":
|
85 |
demo.launch()
|
|
|
7 |
from pathlib import Path
|
8 |
|
9 |
# === Konfigurasi ===
|
10 |
+
model_path = "best.pt" # Ganti dengan path model kamu
|
11 |
class_names = ['coral or rock', 'pipeline', 'ripple marks', 'shipwreck']
|
|
|
12 |
model = YOLO(model_path)
|
13 |
|
14 |
+
# === Fungsi untuk menggambar prediksi lengkap ===
|
15 |
def draw_predictions(img, segments, class_ids, confs, color=(255, 0, 0), alpha=0.5):
|
16 |
overlay = img.copy()
|
17 |
for i, seg in enumerate(segments):
|
|
|
20 |
polygon[:, 1] *= img.shape[0]
|
21 |
polygon = polygon.astype(np.int32)
|
22 |
|
23 |
+
cls_id = int(class_ids[i]) # pastikan integer
|
24 |
+
conf = confs[i]
|
25 |
+
|
26 |
+
# Draw mask
|
27 |
cv2.fillPoly(overlay, [polygon], color)
|
28 |
+
|
29 |
+
# Draw bounding box
|
30 |
x, y, w, h = cv2.boundingRect(polygon)
|
31 |
+
cv2.rectangle(overlay, (x, y), (x + w, y + h), color, 2)
|
32 |
+
|
33 |
+
# Draw label + confidence
|
34 |
+
label = f"{class_names[cls_id]} ({conf:.2f})"
|
35 |
+
cv2.putText(overlay, label, (x, y - 8), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,255,255), 2)
|
36 |
|
37 |
return cv2.addWeighted(overlay, alpha, img, 1 - alpha, 0)
|
38 |
|
39 |
+
# === Fungsi proses gambar dan hasil deteksi ===
|
40 |
+
def process_image_and_report(image):
|
41 |
temp_path = "temp.jpg"
|
42 |
image.save(temp_path)
|
43 |
img = cv2.imread(temp_path)
|
44 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
45 |
|
46 |
+
# === Prediksi menggunakan YOLOv8
|
47 |
results = model(temp_path)[0]
|
48 |
segs = [seg.xy for seg in results.masks] if results.masks else []
|
49 |
cls_ids = results.boxes.cls.tolist() if results.boxes else []
|
50 |
confs = results.boxes.conf.tolist() if results.boxes else []
|
51 |
xywh = results.boxes.xywhn.tolist() if results.boxes else []
|
52 |
|
53 |
+
# === Visualisasi prediksi
|
54 |
+
img_pred = draw_predictions(img.copy(), segs, cls_ids, confs)
|
55 |
|
56 |
+
# === Buat laporan CSV
|
57 |
rows = []
|
58 |
for i in range(len(cls_ids)):
|
59 |
rows.append({
|
|
|
67 |
})
|
68 |
|
69 |
df = pd.DataFrame(rows)
|
70 |
+
csv_path = "detection_report.csv"
|
71 |
df.to_csv(csv_path, index=False)
|
72 |
|
73 |
+
return img_pred, csv_path
|
74 |
|
75 |
+
# === Gradio UI ===
|
76 |
with gr.Blocks() as demo:
|
77 |
+
gr.Markdown("## 🧠 YOLOv8 Segmentation Viewer + Detection Report")
|
78 |
+
gr.Markdown("Upload image → lihat hasil deteksi (mask, box, label, confidence) → unduh CSV")
|
79 |
|
80 |
with gr.Row():
|
81 |
with gr.Column():
|
82 |
image_input = gr.Image(type="pil", label="Upload Image")
|
83 |
+
submit_btn = gr.Button("Predict and Generate Report")
|
84 |
with gr.Column():
|
85 |
+
image_output = gr.Image(type="numpy", label="Prediction Result")
|
86 |
+
download_csv = gr.File(label="Download Detection CSV")
|
87 |
|
88 |
+
submit_btn.click(fn=process_image_and_report, inputs=image_input, outputs=[image_output, download_csv])
|
|
|
|
|
89 |
|
90 |
if __name__ == "__main__":
|
91 |
demo.launch()
|