Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,111 +1,89 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
# coding: utf-8
|
3 |
-
|
4 |
import gradio as gr
|
5 |
-
from PIL import Image,
|
6 |
from ultralytics import YOLO
|
7 |
import numpy as np
|
8 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
#
|
11 |
-
try:
|
12 |
-
model_path = "best.pt"
|
13 |
-
if not os.path.exists(model_path):
|
14 |
-
raise FileNotFoundError(f"❌ File {model_path} not found. Upload best.pt to root directory.")
|
15 |
-
model = YOLO(model_path)
|
16 |
-
print("✅ Model loaded successfully!")
|
17 |
-
except Exception as e:
|
18 |
-
print("❌ Failed to load YOLO model:", e)
|
19 |
-
model = None
|
20 |
-
|
21 |
-
# Mapping label (4 classes)
|
22 |
label_map = {
|
23 |
0: "coral",
|
24 |
1: "pipeline",
|
25 |
2: "ripple marks",
|
26 |
3: "shipwreck"
|
27 |
}
|
28 |
-
|
29 |
-
# Warna RGB untuk setiap class
|
30 |
color_map = {
|
31 |
-
0: (0, 255, 0),
|
32 |
-
1: (255, 0, 0),
|
33 |
-
2: (255, 255, 0),
|
34 |
-
3: (0, 0, 255)
|
35 |
}
|
36 |
|
37 |
-
def
|
38 |
-
|
39 |
-
|
40 |
|
41 |
-
|
42 |
-
results = model.predict(image, conf=0.25, iou=0.5)
|
43 |
result = results[0]
|
44 |
|
45 |
-
print("🔍 DETECTIONS:", result.boxes)
|
46 |
-
print("🎭 MASKS:", result.masks)
|
47 |
-
|
48 |
if result.masks is None:
|
49 |
-
|
50 |
-
return image
|
51 |
-
|
52 |
-
image_np = np.array(image).copy()
|
53 |
-
draw = ImageDraw.Draw(image)
|
54 |
-
|
55 |
-
try:
|
56 |
-
font = ImageFont.truetype("arial.ttf", 24)
|
57 |
-
except:
|
58 |
-
font = ImageFont.load_default()
|
59 |
|
60 |
masks = result.masks.data.cpu().numpy()
|
61 |
boxes = result.boxes.xyxy.cpu().numpy()
|
62 |
scores = result.boxes.conf.cpu().numpy()
|
63 |
class_ids = result.boxes.cls.cpu().numpy().astype(int)
|
64 |
|
|
|
|
|
65 |
for i, mask in enumerate(masks):
|
66 |
class_id = class_ids[i]
|
67 |
-
|
68 |
-
color = color_map.get(class_id, (255, 255, 0))
|
69 |
score = scores[i]
|
70 |
box = boxes[i].astype(int)
|
|
|
71 |
|
72 |
-
#
|
73 |
-
color_mask = np.zeros_like(image_np)
|
74 |
for c in range(3):
|
75 |
-
|
76 |
-
image_np = np.where(color_mask > 0, image_np * 0.5 + color_mask * 0.5, image_np)
|
77 |
|
78 |
-
# Gambar bounding box
|
79 |
-
|
80 |
-
draw.text((box[0], box[1] - 10), f"{label}: {score:.2f}", fill="white", font=font)
|
81 |
|
82 |
-
|
83 |
-
|
|
|
84 |
|
85 |
-
#
|
86 |
-
legend_height =
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
89 |
x = 10
|
90 |
for cid, label in label_map.items():
|
91 |
-
|
92 |
-
|
|
|
93 |
x += 150
|
94 |
|
95 |
-
|
96 |
-
combined.paste(final_image, (0, 0))
|
97 |
-
combined.paste(legend, (0, final_image.height))
|
98 |
-
|
99 |
-
return combined
|
100 |
|
101 |
-
#
|
102 |
iface = gr.Interface(
|
103 |
-
fn=
|
104 |
inputs=gr.Image(type="pil"),
|
105 |
outputs=gr.Image(type="pil"),
|
106 |
-
title="YOLOv8 Segmentasi
|
107 |
-
description="Upload citra
|
108 |
)
|
109 |
|
110 |
if __name__ == "__main__":
|
111 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from PIL import Image, ImageFont, ImageDraw
|
3 |
from ultralytics import YOLO
|
4 |
import numpy as np
|
5 |
import os
|
6 |
+
import cv2
|
7 |
+
|
8 |
+
# === Load model ===
|
9 |
+
model_path = "best.pt"
|
10 |
+
if not os.path.exists(model_path):
|
11 |
+
raise FileNotFoundError("❌ File model best.pt tidak ditemukan.")
|
12 |
+
model = YOLO(model_path)
|
13 |
|
14 |
+
# Label dan warna
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
label_map = {
|
16 |
0: "coral",
|
17 |
1: "pipeline",
|
18 |
2: "ripple marks",
|
19 |
3: "shipwreck"
|
20 |
}
|
|
|
|
|
21 |
color_map = {
|
22 |
+
0: (0, 255, 0), # green
|
23 |
+
1: (255, 0, 0), # red
|
24 |
+
2: (255, 255, 0), # yellow
|
25 |
+
3: (0, 0, 255) # blue
|
26 |
}
|
27 |
|
28 |
+
def predict_segmentation(image_pil):
|
29 |
+
image_pil = image_pil.convert("RGB")
|
30 |
+
image_np = np.array(image_pil)
|
31 |
|
32 |
+
results = model.predict(image_pil, conf=0.25, iou=0.5)
|
|
|
33 |
result = results[0]
|
34 |
|
|
|
|
|
|
|
35 |
if result.masks is None:
|
36 |
+
return image_pil
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
masks = result.masks.data.cpu().numpy()
|
39 |
boxes = result.boxes.xyxy.cpu().numpy()
|
40 |
scores = result.boxes.conf.cpu().numpy()
|
41 |
class_ids = result.boxes.cls.cpu().numpy().astype(int)
|
42 |
|
43 |
+
overlay = image_np.copy()
|
44 |
+
|
45 |
for i, mask in enumerate(masks):
|
46 |
class_id = class_ids[i]
|
47 |
+
color = color_map.get(class_id, (255, 255, 255))
|
|
|
48 |
score = scores[i]
|
49 |
box = boxes[i].astype(int)
|
50 |
+
label = label_map.get(class_id, str(class_id))
|
51 |
|
52 |
+
# Warnai area mask (semi-transparent)
|
|
|
53 |
for c in range(3):
|
54 |
+
overlay[:, :, c] = np.where(mask > 0, overlay[:, :, c] * 0.5 + color[c] * 0.5, overlay[:, :, c])
|
|
|
55 |
|
56 |
+
# Gambar bounding box
|
57 |
+
cv2.rectangle(overlay, (box[0], box[1]), (box[2], box[3]), color, 2)
|
|
|
58 |
|
59 |
+
# Label + score
|
60 |
+
text = f"{label} {score:.2f}"
|
61 |
+
cv2.putText(overlay, text, (box[0], box[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
|
62 |
|
63 |
+
# Tambah legend
|
64 |
+
legend_height = 60
|
65 |
+
h, w, _ = overlay.shape
|
66 |
+
combined = np.ones((h + legend_height, w, 3), dtype=np.uint8) * 255
|
67 |
+
combined[:h] = overlay
|
68 |
+
|
69 |
+
# Gambar legenda
|
70 |
x = 10
|
71 |
for cid, label in label_map.items():
|
72 |
+
color = color_map[cid]
|
73 |
+
cv2.rectangle(combined, (x, h + 10), (x + 20, h + 30), color, -1)
|
74 |
+
cv2.putText(combined, label, (x + 30, h + 27), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 0), 1)
|
75 |
x += 150
|
76 |
|
77 |
+
return Image.fromarray(combined)
|
|
|
|
|
|
|
|
|
78 |
|
79 |
+
# Gradio app
|
80 |
iface = gr.Interface(
|
81 |
+
fn=predict_segmentation,
|
82 |
inputs=gr.Image(type="pil"),
|
83 |
outputs=gr.Image(type="pil"),
|
84 |
+
title="YOLOv8 Segmentasi Sonar",
|
85 |
+
description="Upload citra Side Scan Sonar. Akan ditampilkan: mask, bounding box, confidence score, dan legenda kelas."
|
86 |
)
|
87 |
|
88 |
if __name__ == "__main__":
|
89 |
+
iface.launch()
|