Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -13,8 +13,75 @@ with open('loras.json', 'r') as f:
|
|
13 |
# Initialize the base model
|
14 |
base_model = "black-forest-labs/FLUX.1-dev"
|
15 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
|
|
|
16 |
pipe.to("cuda")
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
def update_selection(evt: gr.SelectData):
|
19 |
selected_lora = loras[evt.index]
|
20 |
new_placeholder = f"Type a prompt for {selected_lora['title']}"
|
@@ -41,6 +108,11 @@ def run_lora(prompt, cfg_scale, steps, selected_index, seed, width, height, lora
|
|
41 |
else:
|
42 |
pipe.load_lora_weights(lora_path)
|
43 |
|
|
|
|
|
|
|
|
|
|
|
44 |
# Set random seed for reproducibility
|
45 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
46 |
|
|
|
13 |
# Initialize the base model
|
14 |
base_model = "black-forest-labs/FLUX.1-dev"
|
15 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
|
16 |
+
original_load_lora = copy.deepcopy(pipe.load_lora_into_transformer)
|
17 |
pipe.to("cuda")
|
18 |
|
19 |
+
def load_lora_into_transformer_patched(cls, state_dict, transformer, adapter_name=None, alpha=None, _pipeline=None):
|
20 |
+
from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict
|
21 |
+
|
22 |
+
keys = list(state_dict.keys())
|
23 |
+
|
24 |
+
transformer_keys = [k for k in keys if k.startswith(cls.transformer_name)]
|
25 |
+
state_dict = {
|
26 |
+
k.replace(f"{cls.transformer_name}.", ""): v for k, v in state_dict.items() if k in transformer_keys
|
27 |
+
}
|
28 |
+
|
29 |
+
if len(state_dict.keys()) > 0:
|
30 |
+
# check with first key if is not in peft format
|
31 |
+
first_key = next(iter(state_dict.keys()))
|
32 |
+
if "lora_A" not in first_key:
|
33 |
+
state_dict = convert_unet_state_dict_to_peft(state_dict)
|
34 |
+
|
35 |
+
if adapter_name in getattr(transformer, "peft_config", {}):
|
36 |
+
raise ValueError(
|
37 |
+
f"Adapter name {adapter_name} already in use in the transformer - please select a new adapter name."
|
38 |
+
)
|
39 |
+
|
40 |
+
rank = {}
|
41 |
+
for key, val in state_dict.items():
|
42 |
+
if "lora_B" in key:
|
43 |
+
rank[key] = val.shape[1]
|
44 |
+
|
45 |
+
lora_config_kwargs = get_peft_kwargs(rank, network_alpha_dict=None, peft_state_dict=state_dict)
|
46 |
+
if "use_dora" in lora_config_kwargs:
|
47 |
+
if lora_config_kwargs["use_dora"] and is_peft_version("<", "0.9.0"):
|
48 |
+
raise ValueError(
|
49 |
+
"You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`."
|
50 |
+
)
|
51 |
+
else:
|
52 |
+
lora_config_kwargs.pop("use_dora")
|
53 |
+
|
54 |
+
|
55 |
+
lora_config_kwargs["lora_alpha"] = 32
|
56 |
+
lora_config = LoraConfig(**lora_config_kwargs)
|
57 |
+
|
58 |
+
# adapter_name
|
59 |
+
if adapter_name is None:
|
60 |
+
adapter_name = get_adapter_name(transformer)
|
61 |
+
|
62 |
+
# In case the pipeline has been already offloaded to CPU - temporarily remove the hooks
|
63 |
+
# otherwise loading LoRA weights will lead to an error
|
64 |
+
is_model_cpu_offload, is_sequential_cpu_offload = cls._optionally_disable_offloading(_pipeline)
|
65 |
+
|
66 |
+
inject_adapter_in_model(lora_config, transformer, adapter_name=adapter_name)
|
67 |
+
incompatible_keys = set_peft_model_state_dict(transformer, state_dict, adapter_name)
|
68 |
+
|
69 |
+
if incompatible_keys is not None:
|
70 |
+
# check only for unexpected keys
|
71 |
+
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
|
72 |
+
if unexpected_keys:
|
73 |
+
logger.warning(
|
74 |
+
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
|
75 |
+
f" {unexpected_keys}. "
|
76 |
+
)
|
77 |
+
|
78 |
+
# Offload back.
|
79 |
+
if is_model_cpu_offload:
|
80 |
+
_pipeline.enable_model_cpu_offload()
|
81 |
+
elif is_sequential_cpu_offload:
|
82 |
+
_pipeline.enable_sequential_cpu_offload()
|
83 |
+
# Unsafe code />
|
84 |
+
|
85 |
def update_selection(evt: gr.SelectData):
|
86 |
selected_lora = loras[evt.index]
|
87 |
new_placeholder = f"Type a prompt for {selected_lora['title']}"
|
|
|
108 |
else:
|
109 |
pipe.load_lora_weights(lora_path)
|
110 |
|
111 |
+
if "custom_alpha" in selected_lora:
|
112 |
+
pipe.load_lora_into_transformer = load_lora_into_transformer_patched
|
113 |
+
else:
|
114 |
+
pipe.load_lora_into_transformer = original_load_lora
|
115 |
+
|
116 |
# Set random seed for reproducibility
|
117 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
118 |
|