Spaces:
Sleeping
Sleeping
Upload app (8).py
Browse files- app (8).py +148 -0
app (8).py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
import argparse
|
6 |
+
import random
|
7 |
+
import time
|
8 |
+
from omegaconf import OmegaConf
|
9 |
+
import torch
|
10 |
+
import torchvision
|
11 |
+
from pytorch_lightning import seed_everything
|
12 |
+
from huggingface_hub import hf_hub_download
|
13 |
+
from einops import repeat
|
14 |
+
import torchvision.transforms as transforms
|
15 |
+
from utils.utils import instantiate_from_config
|
16 |
+
sys.path.insert(0, "scripts/evaluation")
|
17 |
+
from funcs import (
|
18 |
+
batch_ddim_sampling,
|
19 |
+
load_model_checkpoint,
|
20 |
+
get_latent_z,
|
21 |
+
save_videos
|
22 |
+
)
|
23 |
+
from transformers import pipeline
|
24 |
+
|
25 |
+
def download_model():
|
26 |
+
REPO_ID = 'Doubiiu/DynamiCrafter_1024'
|
27 |
+
filename_list = ['model.ckpt']
|
28 |
+
if not os.path.exists('./checkpoints/dynamicrafter_1024_v1/'):
|
29 |
+
os.makedirs('./checkpoints/dynamicrafter_1024_v1/')
|
30 |
+
for filename in filename_list:
|
31 |
+
local_file = os.path.join('./checkpoints/dynamicrafter_1024_v1/', filename)
|
32 |
+
if not os.path.exists(local_file):
|
33 |
+
hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/dynamicrafter_1024_v1/', force_download=True)
|
34 |
+
|
35 |
+
download_model()
|
36 |
+
ckpt_path='checkpoints/dynamicrafter_1024_v1/model.ckpt'
|
37 |
+
config_file='configs/inference_1024_v1.0.yaml'
|
38 |
+
config = OmegaConf.load(config_file)
|
39 |
+
model_config = config.pop("model", OmegaConf.create())
|
40 |
+
model_config['params']['unet_config']['params']['use_checkpoint']=False
|
41 |
+
model = instantiate_from_config(model_config)
|
42 |
+
assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
|
43 |
+
model = load_model_checkpoint(model, ckpt_path)
|
44 |
+
model.eval()
|
45 |
+
model = model.cuda()
|
46 |
+
|
47 |
+
# ๋ฒ์ญ ๋ชจ๋ธ ์ด๊ธฐํ
|
48 |
+
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
49 |
+
|
50 |
+
@spaces.GPU(duration=300)
|
51 |
+
def infer(image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123, video_length=2):
|
52 |
+
# ํ๊ธ ์
๋ ฅ ๊ฐ์ง ๋ฐ ๋ฒ์ญ
|
53 |
+
if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in prompt):
|
54 |
+
translated = translator(prompt, max_length=512)[0]['translation_text']
|
55 |
+
prompt = translated
|
56 |
+
print(f"Translated prompt: {prompt}")
|
57 |
+
|
58 |
+
resolution = (576, 1024)
|
59 |
+
save_fps = 8
|
60 |
+
seed_everything(seed)
|
61 |
+
transform = transforms.Compose([
|
62 |
+
transforms.Resize(min(resolution)),
|
63 |
+
transforms.CenterCrop(resolution),
|
64 |
+
])
|
65 |
+
torch.cuda.empty_cache()
|
66 |
+
print('start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())))
|
67 |
+
start = time.time()
|
68 |
+
if steps > 60:
|
69 |
+
steps = 60
|
70 |
+
|
71 |
+
batch_size=1
|
72 |
+
channels = model.model.diffusion_model.out_channels
|
73 |
+
frames = int(video_length * save_fps) # ๋น๋์ค ๊ธธ์ด์ ๋ฐ๋ฅธ ํ๋ ์ ์ ๊ณ์ฐ
|
74 |
+
h, w = resolution[0] // 8, resolution[1] // 8
|
75 |
+
noise_shape = [batch_size, channels, frames, h, w]
|
76 |
+
|
77 |
+
# text cond
|
78 |
+
with torch.no_grad(), torch.cuda.amp.autocast():
|
79 |
+
text_emb = model.get_learned_conditioning([prompt])
|
80 |
+
|
81 |
+
# img cond
|
82 |
+
img_tensor = torch.from_numpy(image).permute(2, 0, 1).float().to(model.device)
|
83 |
+
img_tensor = (img_tensor / 255. - 0.5) * 2
|
84 |
+
|
85 |
+
image_tensor_resized = transform(img_tensor) #3,256,256
|
86 |
+
videos = image_tensor_resized.unsqueeze(0) # bchw
|
87 |
+
|
88 |
+
z = get_latent_z(model, videos.unsqueeze(2)) #bc,1,hw
|
89 |
+
|
90 |
+
img_tensor_repeat = repeat(z, 'b c t h w -> b c (repeat t) h w', repeat=frames)
|
91 |
+
|
92 |
+
cond_images = model.embedder(img_tensor.unsqueeze(0)) ## blc
|
93 |
+
img_emb = model.image_proj_model(cond_images)
|
94 |
+
|
95 |
+
imtext_cond = torch.cat([text_emb, img_emb], dim=1)
|
96 |
+
|
97 |
+
fs = torch.tensor([fs], dtype=torch.long, device=model.device)
|
98 |
+
cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat]}
|
99 |
+
|
100 |
+
## inference
|
101 |
+
batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale)
|
102 |
+
## b,samples,c,t,h,w
|
103 |
+
|
104 |
+
video_path = './output.mp4'
|
105 |
+
save_videos(batch_samples, './', filenames=['output'], fps=save_fps)
|
106 |
+
return video_path
|
107 |
+
|
108 |
+
i2v_examples = [
|
109 |
+
['prompts/1024/astronaut04.png', 'a man in an astronaut suit playing a guitar', 30, 7.5, 1.0, 6, 123, 2],
|
110 |
+
]
|
111 |
+
|
112 |
+
css = """#input_img {max-width: 1024px !important} #output_vid {max-width: 1024px; max-height: 576px}"""
|
113 |
+
|
114 |
+
with gr.Blocks(analytics_enabled=False, css=css) as dynamicrafter_iface:
|
115 |
+
gr.Markdown("์ด๋ฏธ์ง๋ก ์์ ์์ฑ ํ
์คํธ (ํ๊ธ ํ๋กฌํํธ ์ง์)")
|
116 |
+
with gr.Tab(label='ImageAnimation_576x1024'):
|
117 |
+
with gr.Column():
|
118 |
+
with gr.Row():
|
119 |
+
with gr.Column():
|
120 |
+
with gr.Row():
|
121 |
+
i2v_input_image = gr.Image(label="Input Image",elem_id="input_img")
|
122 |
+
with gr.Row():
|
123 |
+
i2v_input_text = gr.Text(label='Prompts')
|
124 |
+
with gr.Row():
|
125 |
+
i2v_seed = gr.Slider(label='Random Seed', minimum=0, maximum=10000, step=1, value=123)
|
126 |
+
i2v_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label='ETA', value=1.0, elem_id="i2v_eta")
|
127 |
+
i2v_cfg_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='CFG Scale', value=7.5, elem_id="i2v_cfg_scale")
|
128 |
+
with gr.Row():
|
129 |
+
i2v_steps = gr.Slider(minimum=1, maximum=50, step=1, elem_id="i2v_steps", label="Sampling steps", value=30)
|
130 |
+
i2v_motion = gr.Slider(minimum=5, maximum=20, step=1, elem_id="i2v_motion", label="FPS", value=8)
|
131 |
+
with gr.Row():
|
132 |
+
i2v_video_length = gr.Slider(minimum=2, maximum=8, step=1, elem_id="i2v_video_length", label="Video Length (seconds)", value=2)
|
133 |
+
i2v_end_btn = gr.Button("Generate")
|
134 |
+
with gr.Row():
|
135 |
+
i2v_output_video = gr.Video(label="Generated Video",elem_id="output_vid",autoplay=True,show_share_button=True)
|
136 |
+
|
137 |
+
gr.Examples(examples=i2v_examples,
|
138 |
+
inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed, i2v_video_length],
|
139 |
+
outputs=[i2v_output_video],
|
140 |
+
fn = infer,
|
141 |
+
cache_examples=True,
|
142 |
+
)
|
143 |
+
i2v_end_btn.click(inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed, i2v_video_length],
|
144 |
+
outputs=[i2v_output_video],
|
145 |
+
fn = infer
|
146 |
+
)
|
147 |
+
|
148 |
+
dynamicrafter_iface.queue(max_size=12).launch(show_api=True)
|