Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -54,11 +54,12 @@ model = model.cuda()
|
|
54 |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
55 |
|
56 |
# FLUX 모델 설정
|
57 |
-
dtype = torch.bfloat16
|
58 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
59 |
|
|
|
|
|
60 |
|
61 |
-
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, device_map="auto")
|
62 |
|
63 |
MAX_SEED = np.iinfo(np.int32).max
|
64 |
MAX_IMAGE_SIZE = 2048
|
@@ -67,17 +68,16 @@ MAX_IMAGE_SIZE = 2048
|
|
67 |
def infer_t2i(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
68 |
if randomize_seed:
|
69 |
seed = random.randint(0, MAX_SEED)
|
70 |
-
generator = torch.Generator().manual_seed(seed)
|
71 |
with torch.cuda.amp.autocast():
|
72 |
-
image = pipe
|
73 |
-
prompt
|
74 |
-
width
|
75 |
-
height
|
76 |
-
num_inference_steps
|
77 |
-
generator
|
78 |
guidance_scale=guidance_scale
|
79 |
).images[0]
|
80 |
-
pipe.to("cpu")
|
81 |
torch.cuda.empty_cache()
|
82 |
return image, seed
|
83 |
|
|
|
54 |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
55 |
|
56 |
# FLUX 모델 설정
|
57 |
+
dtype = torch.float16 # bfloat16 대신 float16 사용
|
58 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
59 |
|
60 |
+
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype)
|
61 |
+
pipe = pipe.to(device)
|
62 |
|
|
|
63 |
|
64 |
MAX_SEED = np.iinfo(np.int32).max
|
65 |
MAX_IMAGE_SIZE = 2048
|
|
|
68 |
def infer_t2i(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
69 |
if randomize_seed:
|
70 |
seed = random.randint(0, MAX_SEED)
|
71 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
72 |
with torch.cuda.amp.autocast():
|
73 |
+
image = pipe(
|
74 |
+
prompt=prompt,
|
75 |
+
width=width,
|
76 |
+
height=height,
|
77 |
+
num_inference_steps=num_inference_steps,
|
78 |
+
generator=generator,
|
79 |
guidance_scale=guidance_scale
|
80 |
).images[0]
|
|
|
81 |
torch.cuda.empty_cache()
|
82 |
return image, seed
|
83 |
|