Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -21,6 +21,9 @@ from funcs import (
|
|
21 |
save_videos
|
22 |
)
|
23 |
from transformers import pipeline
|
|
|
|
|
|
|
24 |
|
25 |
def download_model():
|
26 |
REPO_ID = 'Doubiiu/DynamiCrafter_1024'
|
@@ -47,6 +50,23 @@ model = model.cuda()
|
|
47 |
# 번역 모델 초기화
|
48 |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
@spaces.GPU(duration=300)
|
51 |
def infer(image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123, video_length=2):
|
52 |
# 한글 입력 감지 및 번역
|
@@ -105,6 +125,17 @@ def infer(image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123, video
|
|
105 |
save_videos(batch_samples, './', filenames=['output'], fps=save_fps)
|
106 |
return video_path
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
i2v_examples = [
|
109 |
['prompts/1024/astronaut04.png', 'a man in an astronaut suit playing a guitar', 30, 7.5, 1.0, 6, 123, 2],
|
110 |
]
|
@@ -145,4 +176,31 @@ with gr.Blocks(analytics_enabled=False, css=css) as dynamicrafter_iface:
|
|
145 |
fn = infer
|
146 |
)
|
147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
dynamicrafter_iface.queue(max_size=12).launch(show_api=True)
|
|
|
21 |
save_videos
|
22 |
)
|
23 |
from transformers import pipeline
|
24 |
+
from diffusers import FluxPipeline
|
25 |
+
from PIL import Image
|
26 |
+
import numpy as np
|
27 |
|
28 |
def download_model():
|
29 |
REPO_ID = 'Doubiiu/DynamiCrafter_1024'
|
|
|
50 |
# 번역 모델 초기화
|
51 |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
52 |
|
53 |
+
# FLUX 파이프라인 초기화
|
54 |
+
flux_pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
|
55 |
+
flux_pipe.enable_model_cpu_offload()
|
56 |
+
|
57 |
+
def generate_image_from_text(prompt, seed=0):
|
58 |
+
generator = torch.Generator("cpu").manual_seed(seed)
|
59 |
+
image = flux_pipe(
|
60 |
+
prompt,
|
61 |
+
height=1024,
|
62 |
+
width=1024,
|
63 |
+
guidance_scale=3.5,
|
64 |
+
num_inference_steps=50,
|
65 |
+
max_sequence_length=512,
|
66 |
+
generator=generator
|
67 |
+
).images[0]
|
68 |
+
return image
|
69 |
+
|
70 |
@spaces.GPU(duration=300)
|
71 |
def infer(image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123, video_length=2):
|
72 |
# 한글 입력 감지 및 번역
|
|
|
125 |
save_videos(batch_samples, './', filenames=['output'], fps=save_fps)
|
126 |
return video_path
|
127 |
|
128 |
+
@spaces.GPU(duration=300)
|
129 |
+
def infer_t2v(prompt, video_prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123, video_length=2):
|
130 |
+
# 이미지 생성
|
131 |
+
image = generate_image_from_text(prompt, seed)
|
132 |
+
|
133 |
+
# 이미지를 numpy 배열로 변환
|
134 |
+
image_np = np.array(image)
|
135 |
+
|
136 |
+
# 비디오 생성을 위해 기존 infer 함수 호출
|
137 |
+
return infer(image_np, video_prompt, steps, cfg_scale, eta, fs, seed, video_length)
|
138 |
+
|
139 |
i2v_examples = [
|
140 |
['prompts/1024/astronaut04.png', 'a man in an astronaut suit playing a guitar', 30, 7.5, 1.0, 6, 123, 2],
|
141 |
]
|
|
|
176 |
fn = infer
|
177 |
)
|
178 |
|
179 |
+
with gr.Tab(label='T2V'):
|
180 |
+
with gr.Column():
|
181 |
+
with gr.Row():
|
182 |
+
with gr.Column():
|
183 |
+
with gr.Row():
|
184 |
+
t2v_input_text = gr.Text(label='Image Generation Prompt')
|
185 |
+
with gr.Row():
|
186 |
+
t2v_video_prompt = gr.Text(label='Video Generation Prompt')
|
187 |
+
with gr.Row():
|
188 |
+
t2v_seed = gr.Slider(label='Random Seed', minimum=0, maximum=10000, step=1, value=123)
|
189 |
+
t2v_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label='ETA', value=1.0)
|
190 |
+
t2v_cfg_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='CFG Scale', value=7.5)
|
191 |
+
with gr.Row():
|
192 |
+
t2v_steps = gr.Slider(minimum=1, maximum=50, step=1, label="Sampling steps", value=30)
|
193 |
+
t2v_motion = gr.Slider(minimum=5, maximum=20, step=1, label="FPS", value=8)
|
194 |
+
with gr.Row():
|
195 |
+
t2v_video_length = gr.Slider(minimum=2, maximum=8, step=1, label="Video Length (seconds)", value=2)
|
196 |
+
t2v_end_btn = gr.Button("Generate")
|
197 |
+
with gr.Row():
|
198 |
+
t2v_output_video = gr.Video(label="Generated Video", autoplay=True, show_share_button=True)
|
199 |
+
|
200 |
+
t2v_end_btn.click(
|
201 |
+
inputs=[t2v_input_text, t2v_video_prompt, t2v_steps, t2v_cfg_scale, t2v_eta, t2v_motion, t2v_seed, t2v_video_length],
|
202 |
+
outputs=[t2v_output_video],
|
203 |
+
fn=infer_t2v
|
204 |
+
)
|
205 |
+
|
206 |
dynamicrafter_iface.queue(max_size=12).launch(show_api=True)
|