File size: 923 Bytes
2bd9468
 
9902a40
2bd9468
9902a40
891d8e1
2bd9468
9902a40
13ed850
9902a40
891d8e1
2bd9468
13ed850
2bd9468
13ed850
891d8e1
2bd9468
3ec95cb
2bd9468
3382a71
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
import gradio as gr
from transformers import pipeline
from PIL import Image

# ์ด๋ฏธ์ง€ ์ธ์‹ ํŒŒ์ดํ”„๋ผ์ธ ๋กœ๋“œ
model = pipeline("image-classification", model="google/vit-base-patch16-224")

def classify_image(uploaded_image):
    # ์ด์ œ uploaded_image๋Š” ์ž๋™์œผ๋กœ PIL.Image ๊ฐ์ฒด์ž…๋‹ˆ๋‹ค.
    predictions = model(uploaded_image)
    return {prediction['label']: prediction['score'] for prediction in predictions}

# Gradio ์ธํ„ฐํŽ˜์ด์Šค ์ƒ์„ฑ, type="pil"๋กœ ์„ค์ •ํ•˜์—ฌ ์ž๋™์œผ๋กœ PIL.Image ๊ฐ์ฒด๋กœ ๋ณ€ํ™˜๋˜๋„๋ก ํ•จ
iface = gr.Interface(fn=classify_image,
                     inputs=gr.Image(type="pil"),
                     outputs=gr.Label(num_top_classes=3),
                     title="์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜๊ธฐ",
                     description="์ด๋ฏธ์ง€๋ฅผ ์—…๋กœ๋“œํ•˜๋ฉด, ์‚ฌ๋ฌผ์„ ์ธ์‹ํ•˜๊ณ  ์ตœ์ƒ์œ„ 3๊ฐœ์˜ ๋ถ„๋ฅ˜ ๊ฒฐ๊ณผ๋ฅผ ์ถœ๋ ฅํ•ฉ๋‹ˆ๋‹ค.")

# ์ธํ„ฐํŽ˜์ด์Šค ์‹คํ–‰
iface.launch()