File size: 1,116 Bytes
2bd9468
 
 
9902a40
891d8e1
2bd9468
23708c8
 
 
 
 
87c119f
 
9902a40
 
87c119f
 
 
23708c8
 
 
2bd9468
87c119f
23708c8
 
 
 
 
 
 
2bd9468
3382a71
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import gradio as gr
from transformers import pipeline

# ์ด๋ฏธ์ง€ ์ธ์‹ ํŒŒ์ดํ”„๋ผ์ธ ๋กœ๋“œ
model = pipeline("image-classification", model="google/vit-base-patch16-224")

# ์นดํ…Œ๊ณ ๋ฆฌ์— ๋”ฐ๋ฅธ ์‚ฌ์šด๋“œ ํŒŒ์ผ URL์„ ์ •์˜
sound_urls = {
    "dog": "https://example.com/dog_bark.mp3",
    "cat": "https://example.com/cat_meow.mp3",
    # ... ๊ฐ ์นดํ…Œ๊ณ ๋ฆฌ์— ๋Œ€ํ•œ ์‚ฌ์šด๋“œ ํŒŒ์ผ URL ์ถ”๊ฐ€
}

def classify_image(uploaded_image):
    predictions = model(uploaded_image)
    # ๊ฐ€์žฅ ํ™•๋ฅ ์ด ๋†’์€ ์˜ˆ์ธก ๊ฒฐ๊ณผ๋ฅผ ๊ฐ€์ ธ์˜ด
    top_prediction = predictions[0]['label']
    
    # ์˜ˆ์ธก ๊ฒฐ๊ณผ์— ํ•ด๋‹นํ•˜๋Š” ์‚ฌ์šด๋“œ ํŒŒ์ผ์˜ URL์„ ๋ฐ˜ํ™˜
    sound_url = sound_urls.get(top_prediction, None)
    return top_prediction, sound_url

# Gradio ์ธํ„ฐํŽ˜์ด์Šค ์ƒ์„ฑ
iface = gr.Interface(
    fn=classify_image,
    inputs=gr.Image(type="pil"),
    outputs=[gr.Label(), gr.Audio()],
    title="์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜ ๋ฐ ์‚ฌ์šด๋“œ ์žฌ์ƒ",
    description="์ด๋ฏธ์ง€๋ฅผ ์—…๋กœ๋“œํ•˜๋ฉด, ์‚ฌ๋ฌผ์„ ์ธ์‹ํ•˜๊ณ  ํ•ด๋‹นํ•˜๋Š” ์‚ฌ์šด๋“œ์˜ URL์„ ๋ฐ˜ํ™˜ํ•ฉ๋‹ˆ๋‹ค."
)

# ์ธํ„ฐํŽ˜์ด์Šค ์‹คํ–‰
iface.launch()