Spaces:
Runtime error
Runtime error
File size: 1,624 Bytes
2bd9468 a6d7b81 2bd9468 9902a40 8770d52 2bd9468 3377e03 a6d7b81 87c119f 3377e03 8770d52 a6d7b81 3377e03 a6d7b81 3377e03 ad7babb a6d7b81 23708c8 3377e03 23708c8 8770d52 872e164 ad7babb 23708c8 2bd9468 ad7babb 3382a71 a6d7b81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import gradio as gr
from transformers import pipeline
from gradio_client import Client # ๊ฐ์ : gradio_client ๋ผ์ด๋ธ๋ฌ๋ฆฌ๊ฐ ์ฌ์ฉ ๊ฐ๋ฅํ๋ค.
# ์ด๋ฏธ์ง ์ธ์ ํ์ดํ๋ผ์ธ ๋ก๋
image_model = pipeline("image-classification", model="google/vit-base-patch16-224")
def generate_voice(prompt):
# Tango API๋ฅผ ์ฌ์ฉํ์ฌ ์์ฑ ์์ฑ
client = Client("https://declare-lab-tango.hf.space/")
result = client.predict(
prompt, # ์ด๋ฏธ์ง ๋ถ๋ฅ ๊ฒฐ๊ณผ๋ฅผ ํ๋กฌํํธ๋ก ์ฌ์ฉ
100, # Steps
1, # Guidance Scale
api_name="/predict" # API ์๋ํฌ์ธํธ ๊ฒฝ๋ก
)
# Tango API ํธ์ถ ๊ฒฐ๊ณผ ์ฒ๋ฆฌ
# ์: result์์ ์์ฑ ํ์ผ URL ๋๋ ๋ฐ์ดํฐ ์ถ์ถ
return result
def classify_and_generate_voice(uploaded_image):
# ์ด๋ฏธ์ง ๋ถ๋ฅ
predictions = image_model(uploaded_image)
top_prediction = predictions[0]['label'] # ๊ฐ์ฅ ํ๋ฅ ์ด ๋์ ๋ถ๋ฅ ๊ฒฐ๊ณผ
# ์์ฑ ์์ฑ
voice_result = generate_voice(top_prediction)
# ๋ฐํ๋ ์์ฑ ๊ฒฐ๊ณผ๋ฅผ Gradio ์ธํฐํ์ด์ค๋ก ์ ๋ฌ
# ์: voice_result['url'] ๋๋ voice_result['audio_data'] ๋ฑ
return top_prediction, voice_result
# Gradio ์ธํฐํ์ด์ค ์์ฑ
iface = gr.Interface(
fn=classify_and_generate_voice,
inputs=gr.Image(type="pil"),
outputs=[gr.Label(), gr.Audio()],
title="msVision_3",
description="์ด๋ฏธ์ง๋ฅผ ์
๋ก๋ํ๋ฉด, ์ฌ๋ฌผ์ ์ธ์ํ๊ณ ํด๋นํ๋ ์์ฑ์ ์์ฑํฉ๋๋ค.",
examples=["dog.jpg", "cat.jpg"] # ์์ ๋ ๋ถ๋ถ: ์ฝค๋ง ์ถ๊ฐ
)
# ์ธํฐํ์ด์ค ์คํ
iface.launch()
|