Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,54 +1,66 @@
|
|
1 |
from sentence_transformers import SentenceTransformer
|
2 |
-
from datasets import load_dataset
|
3 |
-
import
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
9 |
data = dataset["train"]
|
10 |
-
data = data.add_faiss_index("embeddings")
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
embedded_query = ST.encode(query)
|
15 |
-
scores, retrieved_examples = data.get_nearest_examples(
|
16 |
-
"embeddings", embedded_query,
|
17 |
-
k=k # get only top k results
|
18 |
)
|
19 |
return scores, retrieved_examples
|
20 |
|
21 |
-
def format_prompt(prompt,retrieved_documents,k):
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
PROMPT
|
26 |
-
return PROMPT
|
27 |
|
28 |
def generate(formatted_prompt):
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
47 |
|
48 |
-
def rag_chatbot(prompt:str,k:int=2):
|
49 |
-
scores , retrieved_documents = search(prompt, k)
|
50 |
-
formatted_prompt = format_prompt(prompt,retrieved_documents,k)
|
51 |
-
return generate(formatted_prompt)
|
52 |
|
53 |
def rag_chatbot_interface(prompt:str,k:int=2):
|
54 |
scores , retrieved_documents = search(prompt, k)
|
|
|
1 |
from sentence_transformers import SentenceTransformer
|
2 |
+
from datasets import load_dataset, Dataset
|
3 |
+
import faiss # νμν κ²½μ° faissλ₯Ό μν¬νΈν©λλ€.
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
5 |
+
import torch
|
6 |
|
7 |
+
# λͺ¨λΈ λ° ν ν¬λμ΄μ μ€μ
|
8 |
+
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(
|
11 |
+
model_id,
|
12 |
+
torch_dtype=torch.bfloat16,
|
13 |
+
device_map="auto",
|
14 |
+
quantization_config=BitsAndBytesConfig(
|
15 |
+
load_in_4bit=True,
|
16 |
+
bnb_4bit_use_double_quant=True,
|
17 |
+
bnb_4bit_quant_type="nf4",
|
18 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
19 |
+
)
|
20 |
+
)
|
21 |
|
22 |
+
# λ°μ΄ν° λ‘λ© λ° faiss μΈλ±μ€ μμ±
|
23 |
+
ST = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
|
24 |
+
dataset = load_dataset("not-lain/wikipedia", revision="embedded")
|
25 |
data = dataset["train"]
|
26 |
+
data = data.add_faiss_index("embeddings")
|
27 |
|
28 |
+
# κ²μ λ° μλ΅ μμ± ν¨μ
|
29 |
+
def search(query: str, k: int = 3):
|
30 |
+
embedded_query = ST.encode(query)
|
31 |
+
scores, retrieved_examples = data.get_nearest_examples(
|
32 |
+
"embeddings", embedded_query, k=k
|
|
|
33 |
)
|
34 |
return scores, retrieved_examples
|
35 |
|
36 |
+
def format_prompt(prompt, retrieved_documents, k):
|
37 |
+
PROMPT = f"Question:{prompt}\nContext:"
|
38 |
+
for idx in range(k):
|
39 |
+
PROMPT += f"{retrieved_documents['text'][idx]}\n"
|
40 |
+
return PROMPT
|
|
|
41 |
|
42 |
def generate(formatted_prompt):
|
43 |
+
formatted_prompt = formatted_prompt[:2000] # GPU λ©λͺ¨λ¦¬ μ νμ κ³ λ €
|
44 |
+
messages = [{"role": "system", "content": "You are an assistant..."}, {"role": "user", "content": formatted_prompt}]
|
45 |
+
input_ids = tokenizer(messages, return_tensors="pt", padding=True).input_ids.to(model.device)
|
46 |
+
outputs = model.generate(
|
47 |
+
input_ids,
|
48 |
+
max_new_tokens=1024,
|
49 |
+
eos_token_id=[tokenizer.eos_token_id],
|
50 |
+
do_sample=True,
|
51 |
+
temperature=0.6,
|
52 |
+
top_p=0.9
|
53 |
+
)
|
54 |
+
response = tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True)
|
55 |
+
return response
|
56 |
+
|
57 |
+
def rag_chatbot(prompt: str, k: int = 2):
|
58 |
+
scores, retrieved_documents = search(prompt, k)
|
59 |
+
formatted_prompt = format_prompt(prompt, retrieved_documents, k)
|
60 |
+
return generate(formatted_prompt)
|
61 |
+
|
62 |
+
rag_chatbot("What is anarchy?", k=2)
|
63 |
|
|
|
|
|
|
|
|
|
64 |
|
65 |
def rag_chatbot_interface(prompt:str,k:int=2):
|
66 |
scores , retrieved_documents = search(prompt, k)
|