seawolf2357 commited on
Commit
2829eb5
Β·
verified Β·
1 Parent(s): d6395eb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -26
app.py CHANGED
@@ -1,5 +1,6 @@
1
  from sentence_transformers import SentenceTransformer
2
  from datasets import load_dataset
 
3
 
4
  ST = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
5
 
@@ -17,31 +18,6 @@ def search(query: str, k: int = 3 ):
17
  )
18
  return scores, retrieved_examples
19
 
20
- from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
21
- import torch
22
-
23
- model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
24
-
25
- # use quantization to lower GPU usage
26
- bnb_config = BitsAndBytesConfig(
27
- load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16
28
- )
29
-
30
- tokenizer = AutoTokenizer.from_pretrained(model_id)
31
- model = AutoModelForCausalLM.from_pretrained(
32
- model_id,
33
- torch_dtype=torch.bfloat16,
34
- device_map="auto",
35
- quantization_config=bnb_config
36
- )
37
- terminators = [
38
- tokenizer.eos_token_id,
39
- tokenizer.convert_tokens_to_ids("<|eot_id|>")
40
- ]
41
- SYS_PROMPT = """You are an assistant for answering questions.
42
- You are given the extracted parts of a long document and a question. Provide a conversational answer.
43
- If you don't know the answer, just say "I do not know." Don't make up an answer."""
44
-
45
  def format_prompt(prompt,retrieved_documents,k):
46
  """using the retrieved documents we will prompt the model to generate our responses"""
47
  PROMPT = f"Question:{prompt}\nContext:"
@@ -74,4 +50,34 @@ def rag_chatbot(prompt:str,k:int=2):
74
  formatted_prompt = format_prompt(prompt,retrieved_documents,k)
75
  return generate(formatted_prompt)
76
 
77
- rag_chatbot("what's anarchy ?", k = 2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  from sentence_transformers import SentenceTransformer
2
  from datasets import load_dataset
3
+ import gradio as gr
4
 
5
  ST = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
6
 
 
18
  )
19
  return scores, retrieved_examples
20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  def format_prompt(prompt,retrieved_documents,k):
22
  """using the retrieved documents we will prompt the model to generate our responses"""
23
  PROMPT = f"Question:{prompt}\nContext:"
 
50
  formatted_prompt = format_prompt(prompt,retrieved_documents,k)
51
  return generate(formatted_prompt)
52
 
53
+ def rag_chatbot_interface(prompt:str,k:int=2):
54
+ scores , retrieved_documents = search(prompt, k)
55
+ formatted_prompt = format_prompt(prompt,retrieved_documents,k)
56
+ return generate(formatted_prompt)
57
+
58
+ SYS_PROMPT = """You are an assistant for answering questions.
59
+ You are given the extracted parts of a long document and a question. Provide a conversational answer.
60
+ If you don't know the answer, just say "I do not know." Don't make up an answer."""
61
+
62
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
63
+ model = AutoModelForCausalLM.from_pretrained(
64
+ model_id,
65
+ torch_dtype=torch.bfloat16,
66
+ device_map="auto",
67
+ quantization_config=bnb_config
68
+ )
69
+ terminators = [
70
+ tokenizer.eos_token_id,
71
+ tokenizer.convert_tokens_to_ids("<|eot_id|>")
72
+ ]
73
+
74
+ iface = gr.Interface(fn=rag_chatbot_interface,
75
+ inputs="text",
76
+ outputs="text",
77
+ input_types=["text"],
78
+ output_types=["text"],
79
+ title="Retrieval-Augmented Generation Chatbot",
80
+ description="This is a chatbot that uses a retrieval-augmented generation approach to provide more accurate answers. It first searches for relevant documents and then generates a response based on the prompt and the retrieved documents."
81
+ )
82
+
83
+ iface.launch()