Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -10,40 +10,33 @@ from accelerate import Accelerator
|
|
10 |
# νκ²½ λ³μμμ Hugging Face API ν€ λ‘λ
|
11 |
hf_api_key = os.getenv('HF_API_KEY')
|
12 |
|
13 |
-
# λͺ¨λΈ ID
|
14 |
-
# λͺ¨λΈ ID
|
15 |
model_id = "microsoft/phi-2"
|
16 |
|
17 |
-
# μ¬μ©μ μ μ
|
18 |
-
|
19 |
-
model_id,
|
20 |
-
trust_remote_code=True # μ¬μ©μ μ μ μ½λ μ€ν νμ©
|
21 |
-
)
|
22 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_api_key)
|
23 |
-
accelerator = Accelerator()
|
24 |
-
|
25 |
-
# μμν μ€μ μμ΄ λͺ¨λΈ λ‘λ (λ¬Έμ ν΄κ²°μ μν μμ μ‘°μΉ)
|
26 |
model = AutoModelForCausalLM.from_pretrained(
|
27 |
model_id,
|
28 |
token=hf_api_key,
|
|
|
29 |
torch_dtype=torch.float32 # κΈ°λ³Έ dtype μ¬μ©
|
30 |
)
|
|
|
|
|
|
|
31 |
model = accelerator.prepare(model)
|
32 |
|
33 |
-
#
|
34 |
ST = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
|
35 |
dataset = load_dataset("not-lain/wikipedia", revision="embedded")
|
36 |
data = dataset["train"]
|
37 |
data = data.add_faiss_index("embeddings")
|
38 |
|
39 |
-
#
|
40 |
-
|
41 |
-
|
42 |
-
# Define functions for search, prompt formatting, and generation
|
43 |
def search(query: str, k: int = 3):
|
44 |
embedded_query = ST.encode(query)
|
45 |
scores, retrieved_examples = data.get_nearest_examples("embeddings", embedded_query, k=k)
|
46 |
-
return scores,
|
47 |
|
48 |
def format_prompt(prompt, retrieved_documents, k):
|
49 |
PROMPT = f"Question:{prompt}\nContext:"
|
@@ -52,39 +45,26 @@ def format_prompt(prompt, retrieved_documents, k):
|
|
52 |
return PROMPT
|
53 |
|
54 |
def generate(formatted_prompt):
|
55 |
-
# ν둬ννΈλ₯Ό λ¬Έμμ΄λ‘ κ²°ν©
|
56 |
prompt_text = f"{SYS_PROMPT} {formatted_prompt}"
|
57 |
-
# ν ν¬λμ΄μ§
|
58 |
input_ids = tokenizer(prompt_text, return_tensors="pt", padding=True).input_ids.to(accelerator.device)
|
59 |
-
|
60 |
-
outputs =
|
61 |
-
input_ids,
|
62 |
-
max_new_tokens=1024,
|
63 |
-
eos_token_id=tokenizer.eos_token_id,
|
64 |
-
do_sample=True,
|
65 |
-
temperature=0.6,
|
66 |
-
top_p=0.9
|
67 |
-
)
|
68 |
-
# μλ΅ ν
μ€νΈλ‘ λμ½λ©
|
69 |
-
response = tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True)
|
70 |
-
return response
|
71 |
-
|
72 |
|
73 |
def rag_chatbot_interface(prompt: str, k: int = 2):
|
74 |
scores, retrieved_documents = search(prompt, k)
|
75 |
formatted_prompt = format_prompt(prompt, retrieved_documents, k)
|
76 |
return generate(formatted_prompt)
|
77 |
|
78 |
-
#
|
79 |
-
SYS_PROMPT = "You are an assistant for answering questions.
|
80 |
-
|
81 |
|
|
|
82 |
iface = gr.Interface(
|
83 |
fn=rag_chatbot_interface,
|
84 |
-
inputs="text",
|
85 |
-
outputs="text",
|
86 |
title="Retrieval-Augmented Generation Chatbot",
|
87 |
-
description="This
|
88 |
)
|
89 |
|
90 |
iface.launch()
|
|
|
10 |
# νκ²½ λ³μμμ Hugging Face API ν€ λ‘λ
|
11 |
hf_api_key = os.getenv('HF_API_KEY')
|
12 |
|
13 |
+
# λͺ¨λΈ ID μ€μ
|
|
|
14 |
model_id = "microsoft/phi-2"
|
15 |
|
16 |
+
# μ¬μ©μ μ μ μ½λ μ€ν νμ©κ³Ό ν¨κ» λͺ¨λΈ λ° ν ν¬λμ΄μ λ‘λ
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_api_key, trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
model = AutoModelForCausalLM.from_pretrained(
|
19 |
model_id,
|
20 |
token=hf_api_key,
|
21 |
+
trust_remote_code=True, # μ¬μ©μ μ μ μ½λ μ€ν νμ©
|
22 |
torch_dtype=torch.float32 # κΈ°λ³Έ dtype μ¬μ©
|
23 |
)
|
24 |
+
|
25 |
+
# Accelerator μ€μ
|
26 |
+
accelerator = Accelerator()
|
27 |
model = accelerator.prepare(model)
|
28 |
|
29 |
+
# λ°μ΄ν°μ
λ° FAISS μΈλ±μ€ λ‘λ
|
30 |
ST = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
|
31 |
dataset = load_dataset("not-lain/wikipedia", revision="embedded")
|
32 |
data = dataset["train"]
|
33 |
data = data.add_faiss_index("embeddings")
|
34 |
|
35 |
+
# κ²μ, ν둬ννΈ ν¬λ§·ν
, μλ΅ μμ± ν¨μ
|
|
|
|
|
|
|
36 |
def search(query: str, k: int = 3):
|
37 |
embedded_query = ST.encode(query)
|
38 |
scores, retrieved_examples = data.get_nearest_examples("embeddings", embedded_query, k=k)
|
39 |
+
return scores, retrieved_documents
|
40 |
|
41 |
def format_prompt(prompt, retrieved_documents, k):
|
42 |
PROMPT = f"Question:{prompt}\nContext:"
|
|
|
45 |
return PROMPT
|
46 |
|
47 |
def generate(formatted_prompt):
|
|
|
48 |
prompt_text = f"{SYS_PROMPT} {formatted_prompt}"
|
|
|
49 |
input_ids = tokenizer(prompt_text, return_tensors="pt", padding=True).input_ids.to(accelerator.device)
|
50 |
+
outputs = model.generate(input_ids, max_new_tokens=1024, eos_token_id=tokenizer.eos_token_id, do_sample=True, temperature=0.6, top_p=0.9)
|
51 |
+
return tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
def rag_chatbot_interface(prompt: str, k: int = 2):
|
54 |
scores, retrieved_documents = search(prompt, k)
|
55 |
formatted_prompt = format_prompt(prompt, retrieved_documents, k)
|
56 |
return generate(formatted_prompt)
|
57 |
|
58 |
+
# μμ€ν
ν둬ννΈ
|
59 |
+
SYS_PROMPT = "You are an assistant for answering questions. Provide a conversational answer."
|
|
|
60 |
|
61 |
+
# Gradio μΈν°νμ΄μ€
|
62 |
iface = gr.Interface(
|
63 |
fn=rag_chatbot_interface,
|
64 |
+
inputs="text",
|
65 |
+
outputs="text",
|
66 |
title="Retrieval-Augmented Generation Chatbot",
|
67 |
+
description="This chatbot provides more accurate answers by searching relevant documents and generating responses."
|
68 |
)
|
69 |
|
70 |
iface.launch()
|